X-Ray Scattering Studies of Materials Using Ultra-Short Pulses

Roger Falcone

UC Berkeley LBNL

SLAC

and the ALS and SPPS Collaborations

"Workshop on 4th Generation Light Sources and Ultrafast Phenomena" December 2005

Short pulse lasers and synchrotron x-ray sources can create and probe dynamic and transient states of matter

Current facilities: APS, ESRF, SLL, BESSY, ALS

Laser-initiated bond-breaking, heating, and strain can result in phase transitions and be probed by time-resolved x-ray diffraction

Lindenberg et al., Phys Rev. Lett. 84, 111 (2000)

Transient strain can be generated and controlled using multiple ultrashort pump pulses

Single-pulse excitation

Multiple pulse excitation: constructive interference $(\Delta t \sim 35 \text{ ps})$

Multiple pulse excitation: mode cancellation mode $(\Delta t \sim 18 \text{ ps})$

Lindenberg et al. Optics Letters, 27, 869 (2002)

High-energy-density matter can be probed by time-resolved x-ray absorption spectroscopy

e.g., supports calculations indicating that the low-density phase of liquid carbon is predominately sp-bonded S. Johnson, *et al* Silicon: PRL **91**, 157403 (2003) Carbon: PRL **94**, 057407 (2005)

X-ray absorption of liquid carbon

- Liquid carbon present in the interiors of planets Uranus and Neptune.
 Liquid carbon not stable ambient pressure.
- Molecular dynamics calculations: High density r liquid predominantly sp³ coordination, low r liquid mainly sp, Glosli and Ree, PRL 82, 4659 (1999)

Determine structure of molecules in an excited electronic state

• Theory by L. Seijo and Z. Barandiaran predicts ligand-bond distances: $R_{e}[5f^{n-1}6d(t_{2g})^{1}] < R_{e}[5f^{n}] \cdot \qquad \Delta R = -0.65A$

Perturbed liquid structures and subsequent dynamics can be probed by time-resolved x-ray scattering

X-ray scattering as a function of angle indicates local structure of WDM

- High Q reflects hard-core region, short length-scales
- Intermediate Q reflects lattice spacing; can be compared with EXAFS pair correlation function
- Low Q reflects long-range, mesoscopic properties

Time-resolved local structural changes in H₂O are seen upon charge injection

 Implies molecular re-orientation around injected charge with similarities to thermally induced changes

Ultrashort "sliced" x-ray pulses are available

Proposed by Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,1996

Prototype Slicing Beamline at the ALS

Femtosecond Pulses of Synchrotron Radiation

Schoenlein et al., Science, 287, 2237 (2000)

Ultrafast Structural and Electronic Transitions in VO₂

See talk by Matteo Rini on Thursday

New Femtosecond Undulator Beamline 6.0 at the ALS

I. Insertion Device

- highest possible flux and brightness 0.2-10 keV
- small-gap undulator/wiggler (1.5 T, 50 x 3cm period)
 x10² increase in flux, x10³ increase in brightness

II. Beamlines for Femtosecond X-ray Science

isolation of femtosecond x-ray, 0.2-2 keV, 2-10 keV
 sector 6 - proximity to existing wiggler 200 fs x-rays

III. Laser: average power/repetition rate

• 30 W (1.5 mJ per pulse, 20 kHz)

x10 increase in flux

IV. Storage Ring Modifications

local vertical dispersion bump – sector 6 and/or 5

New Beamline 6.0 at the ALS Synchrotron

Separate beamlines for 100 fs time resolution studies using hard and soft x-rays

Femtosecond Soft X-ray Beamline 6.0.1.2

X-Ray Chopper

- Reduces power on samples and downstream optics
- Absorbed power: 440 W
- Water-cooled disk with 100 (or 200) slots spinning at 200 Hz
- Frequency: 20 kHz matched to laser repetition rate
- Opening time 2 microseconds

Femtosecond Laser System

R. Wilcox, R. Schoenlein

Electron beam interaction requirements:

~1.5 mJ pulse energy, 60 fs FWHM, at ~800 nm 20 kHz repetition rate, 30 W average power diffraction limited focusing, beam parameter: M² 1.1

Excitation pump pulses for time-resolved experiments:

~1 mJ pulse energy at 800 nm (OPA) 60 fs pulse duration, 20 kHz repetition rate ~500 ns relative delay

cryogenic power amplifier

Beamline 6.0 Data Sheet

	BL 6.0.1.2	BL 6.0.1
Photon energy range	120 – 1800 eV	2 – 10 keV
Flux (fs slicing pulses, at sample)	1 x 10 ⁶ (1/s 0.1% bw)	1 x 10 ⁵ (1/s)
Flux (70 ps pulses, at sample)	1 x 10 ¹⁰ (1/s 0.1% bw)	1 x 10 ⁹ (1/s)
Energy resolution $(\Delta E/E)$	6 x 10 ⁻⁴	3 x 10 ⁻⁴
Repetition rate	20 kHz	20 kHz
Time resolution (slicing)	200 fs	200 fs
Spot size	60 x 560 μm	110 x 110 μm

	Laser system
λ	800 nm
Pulse energy	1 mJ
Repetition rate	20 kHz
Pulse duration	70 fs

For information contact: Phil Heimann at ALS, LBNL

Femtosecond X-ray Flux

Plasma source flux in mrad² laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 10⁵ improvement) Cu K_α - 10¹⁰ ph/s/4π (proj. 10¹² with Hg target) cont. 6x10⁷ ph/s/4π (integ. from 7-8 keV)

> *ALS typical average x-ray flux* undulator ~10¹⁵ ph/s/0.1% BW bend-magnet ~10¹³ ph/s/0.1% BW

2008-09 Expected commissioning

LCLS Science Thrust Areas

- Atomic, Molecular, and Optical (AMO) science
- High-energy-density (HED) science
- Diffraction studies of stimulated dynamics
- Coherent scattering studies of nanoscale fluctuations
- Nano-particle and single-molecule (non-periodic) imaging

See talk by Ingolf Lindau on Wednesday

High Energy Density Science: One of Five Scientific Thrusts at the LCLS XFEL

Probing dense matter with Thomson Scattering Perform scattering from solid density plasmas Measure n_e, T_e, <Z>, f(v)

Plasma spectroscopy of Hot Dense Matter

- Use high energy laser to create uniform HED plasmas
- Measure collision rates, redistribution rates, ionization kinetics

forward scattered signal

• Probing High Pressure phenomena

- Use high energy laser to create steady high pressures
- Produce shocks and shockless high pressure systems
- Study high pressure matter on time scales < 1 ps
- Diagnostics: Diffraction, SAXS, Diffuse scattering, Thomson scattering.

~ 100 µm

back scattered signal

High-Energy-Density Matter Occurs Widely

•Hot Dense Matter (HDM) occurs in:

- Astrophysical systems
- Plasmas
- Fusion experiments

•Warm Dense Matter (WDM) occurs in:

- Cores of large planets
- Systems that start solid and end as a plasma
- Fusion experiments

WDM created by isochoric heating will isentropically expand sampling phase space

- XFEL can heat matter rapidly and uniformly to create:
- Using underdense foams allows more complete sampling
- Isochores (constant ρ)
- Isentropes (constant entropy)

LCLS x-ray laser will enable HED spectroscopy

• t = 0 laser irradiates Al dot

• t = 100 ps FEL irradiates plasma

rols material strength, spall, and phase transitions

• LCLS HEDS end station will have sufficient signal to perform measurements during the high pressure phase see B

see Belak, Lee, et al

Challenge is to match experimental and theoretical capabilities for HEDS studies

Future with LCLS

Dynamic Experiments

- Imaging capability
 - Point projection imaging
 - Phase contrast
 - High resolution (sub-µm)
 - Direct determination of density contrast
- Diffraction & scattering
 - Detection of high pressure phase transitions
 - Lattice structure, including dislocation
 & defects
 - Liquid structure
 - Electronic structure
 - Ionization
 - T_e, *f*(v)

These complement the standard instruments, e.g., VISAR and other optical diagnostics

Future capabilities at LCLS will reduce uncertainties in EOS experiments

X-ray FEL will be used to probe HED matter

- Scattering from free electrons provides a measure of the T_e, n_e, f(v), and plasma damping
- Due to absorption, refraction and reflection neither visible nor laboratory x-ray lasers can probe high density
- FEL scattering signals will be well above noise for all HED matter

Scattering of the XFEL will provide data on free, tightly-, and weakly-bound electrons

• Weakly-bound and tightly-bound electrons depend on their binding energy relative to the Compton energy shift

- For a 25 eV, 4x10²³ cm⁻³ plasma the XFEL produces10⁴ photons from the free electron scattering
- Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

LCLS Experimental Hall

Proposal for HEDS end station endorsed by LCLS Science Advisory Committee

- Meet needs of an international HEDS community
 - e.g., high pressure and plasma physics
 - many facets of HDM/WDM research possible
- Current efforts to solicit support
 - range of users from universities to national labs

Placement of a high-energy laser adjacent to x-ray FEL and target area

Top View of SLAC site

Characteristics of High Energy Laser

LCLS HEDS end station proposal proposal (courtesy of Dick Lee)

Experiment	Description	PARTICIPANTS
Warm Dense Matter Creation	Using the XFEL to uniformly warm solid density samples	HK. Chung, S. Glenzer, G. Gregori, S. Moon, O. Landen, K. Widmann, P. Young, M. Murillo, J. Benage, A. Lindenberg, A. Correa, R. Falcone, W. Nellis, W. Rozmus, A. Ng, T, Ao, J. Wark, J. Sheppard, R. Redmer, D. Schneider, F. Rosmej
Equation of State	Heat / probe a solid with an XFEL to provide material properties	K. Widmann, K. Budil, G. Collins, S. Glenzer, G. Gregori, M. Koenig, A. Bennuzi, A. Nelson, O. Landen, W. Nellis, A. Ng, P. Young, J. Benage, M. Taccetti, S. Rose, D. Schneider
Absorption Spectroscopy	Heat a solid with an optical laser or XFEL and XFEL to probe	P. Heimann, S. Johnson, R. Lee, S. Tzortzakis, S.Bastiani- Ceccoti, C. Chenais, P. Audebert, F. Rosmej, R. Falcone, R. Schuch, A. Lindenberg, D. Chambers, J. Wark, S. Rose
Shock Phenomena	Create shocks with a high-energy lasers and probe with the XFEL	G. Collins, H. Lorenzana, J. Belak, P. Celliers, CS. Yoo, K. Budil, M. Koenig, A. Bennuzi, S. Clark, P. Heimann, R. Jeanloz, P. Alivisatos, R. Falcone, W. Nellis, A. Ng, T. Ao
Surface Studies	Probe ablation/damage process to study structural changes and disintegration	A. Nelson, J. Kuba, A. Andrejczuk, J. B. Pelka, J. Krzywinski, R. Sobierajski, K. Sokolowski-Tinten, L. Juha, M. Bittner, J. Krasna, T. E. Glover
XFEL / Gas Interaction	Create exotic, long-lived highly perturbed electron distribution functions in dense plasmas	R. London, S. Hau-Riege, P. Young, H. K. Chung, W. Rozmus, R. Fedosejev, H. Baldis, V. N. Shlyaptsev, T. Ditmire, H. Fiedorowicz, M. Fajardo, A. Bartnik, F. Dorchies, JC. Gauthier, P. Audebert, V. Bychenkov, D. van der Spoel, C. Caleman, T. Möller, T. Tschentscher, H. Merdji
XFEL / Solid Interaction	Use XFEL directly to create extreme states of matter at high temperature and density	S. Glenzer, K. Budil, H.K. Chung, J, Dunn, S. Hau-Riege, R. London, K. Sokolowski-Tinten, J. Krzywinski, H. Fiedorowicz, A. Bartnik, V. Letal, K. Rohlena, K. Eidmann, D. Chambers, N. Woolsey, A. Andrejczuk, F. Dorchies, J. Gauthier, M. Fajardo, J. Dias, N. Lopes, G. Figueira, M. Bergh, T.
Plasma Spectroscopy	Use XFEL as a pump/probe for excited bound state populations	Tschentscher R. W. Lee, M. Foord, H.K. Chung, D. Riley, F. Y. Khattak, E. Förster, F. Dorchies, JC. Gauthier, S. Tzortzakis, S.Bastiani- Ceccoti, C. Chenais-Popovics, P. Audebert, S. Rose, J. Wark, N. Woolsey, R. Schuch, K. Eidmann, F. Rosmej, S. Ferri
Diagnostic Development	Develop Thomson scattering, SAXS, interferometry, and radiographic	S. Glenzer, G. Gregori, R. Bionta, H. Baldis, P. Heimann, H. Padmore, U. Bergmann, H. Merdji, P. Zeitoun, J. Seely, E. Förster
	imaging	

Linac Coherent Light Source

Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center

The Subpicosecond Pulsed Source (SPPS) is an R&D facility for the LCLS FEL

- Electron bunches generated now at SPPS are 80 fs in duration, comparable to the bunches that will drive future x-ray FELs such as LCLS
- A 2m undulator delivers 80 fs duration hard x-ray pulses

Center

Electro-Optical Sampling for timing at the SPPS

Single-Shot

 e^- temporal information is encoded on transverse profile of laser beam

Adrian Cavalieri et al., U. Mich.

Timing Jitter

Ν

Crossed-Beam Topography for timing at the SPPS

- Crossed-beam technique transforms temporal information into spatial information.
- Measures complete time history in a single shot.
- Position of edge indicates x-ray/laser timing

InSb melting: (111) vs. (220) Reflection

•X-ray probe depth is the same for the two reflections (~50 nm) Measurements conducted under identical laser excitation conditions.

Jitter between SPPS X-Ray Source and Ultrafast Laser As Measured by Streak Camera

Ultrafast x-ray streak camera detectors can also enable time-resolved x-ray science

QE in Normal Incidence vs. Grazing Incidence

Reflection photocathodes demonstrated to have high quantum efficiency at grazing incidence

- Unity Pulsed Quantum Efficiency demonstrated at 1 keV. Near-unity at 500 eV.
- Angular dependence of PQE different to TEY:
 - Batch escape probability compared to single electron escape probability
- No significant field dependence observed.

Ultrafast Streak Camera Detectors

Can we achieve:

- > 100 fs temporal resolution in the x-ray spectrum?
- > 100 % quantum efficiency / single photon detection?

Storage Ring vs. Linac vs. Recirculating Linac X-Ray Sources

- Storage rings provide ~ 100-ps duration pulses (perhaps few ps pulses)
- of spontaneous x-ray radiation
- with high average brightness at high repetition rate
- and can be "sliced" to provide ultrashort pulses at moderate repetition rate
- Linacs provide ultrashort pulses
- of soft and hard x-ray FEL radiation
- with high peak brightness

(photons/pulse/BW = 10^{12} w/FEL vs. 10^7 w/spontaneous vs. 10^3 w/slicing at 100 fs)

- at low repetition rate

Recirculating Linacs provide ultrashort pulses

- of soft x-ray FEL or HGHG radiation, and hard x-ray spontaneous radiation
- at moderate repetition rate

ALS BL 6 Collaboration

R. Abela T.K. Allison A. Belkacem C. Bressler A. Cavalleri M. Chergui A. Correa R.W. Falcone T.E. Glover C.M. Greaves P.A. Heimann M. Hertlein S.L. Johnson M. Kaiser J. Larsson R.W. Lee A.M. Lindenberg D. Lowney A.G. MacPhee T. Mathews F. van Mourik M. Saes R.W. Schoenlein H.A. Padmore J.S. Wark D. Weinstein A.A. Zholents M.S. Zolotorev

SPPS Collaboration

LCLS Collaboration

Five science teams