Linac Coherent Light Source

1.1 Management, Global Controls

Far Experiment Hall (underground)

Near Experiment Half

X-Ray Transport/Optics/Diagnostic:

C. C. C. C.

.6 Endstation Systems

1.4 Undulator

1.3 e-Beam Tra

1.9 Conventional Facilities

Injector

Performance Characteristics of the LCLS

1.5 Å

1.5 π

230 fs

14.35 GeV

- Wavelength[§] (range 1.5-15 Å)
- Electron energy (range 14.35-4.54)
- Norm. emittance mm-mrad (rms)
- Peak current 3,400 A
- Bunch length
- FEL parameter, ρ 4.7 x10⁻⁴
- Gain length
 11 m

- Undulator length 112 m
 - Undulator gap 6 mm
- Undulator par., K 3.7
- Saturation peak power 9 GW
- Peak brightness 1.2 x10³³
- Average brightness 4.2 x10²²

§ shorter wavelengths are possible using higher harmonics of a planar undulator. A superconducting helical undulator would give this possibility

LCLS at SLAC

•Critical Decision 0 approved 13-June 2001

Program developed by international team of scientists working with accelerator and laser physics communities

"the beginning.... not the end"

W/B_C = 500 Los

Femtochemistry

Nanoscale Dynamics in Condensed matter

Atomic Physics

Plasma and Warm Dense Matter

Structural Studies on Single Particles and Biomolecules

FEL Science/Technology

LCLS applications:

Atomic Physics

Most basic LCLS experiments, aimed at understanding the physics of interaction of intense, ultra-fast pulse with atoms

Multiphoton Ionization:

Giant Coulomb explosions of Xe clusters

LCLS applications: Studies of Warm Dense Matter

"...that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid."

 Γ = ratio between electric and thermal potential energy μ = chemical potential (atom interaction potential)

Astrophysical and weapons-related studies lie in the area of warm dense matter. Largest uncertainties in many applied research areas of chemistry and physics come in the warm dense regime

Studies of Warm Dense Matter

LCLS will be able, for the first time, to probe the warm dense matter regime. Use LCLS to create warm dense matter state and also (via delayed pulse) to probe it using xray scattering or imaging.

- Creating Warm Dense Matter
 - Generate <10 eV solid density matter
 - Measure the fundamental nature of the matter via equation of state

- Probing resonances in HDM
 - Measure kinetics process, redistribution rates, kinetic models
 - All time scales

LCLS applications:

X-ray FEL offers the ability to follow the motions of atoms on a femtosecond time scale

udies of small system actions can be compared th theory

Combine single-pulse x-ray diffraction with fast laser excitation

Femtosecond Chemistry

Femtosecond Chemistry

X-Ray Diffraction from a Single Protein Molecule

Avoids radiation damage problem by taking diffraction data before damage occurs

Would allow much broader range of biological structures to be determined

LCLS applications: Nanoscale Dynamics in Condensed Matter

Look at dynamics in solids and liquids on ps time scale

In picoseconds - milliseconds range

Expected LCLS characteristics

Fundamental FEL Radiation Wavelength	<u>1.</u>		٩
Electron Beam Energy	14.3	4.5	GeV
Normalized RMS Slice Emittance	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Bunch/Pulse Length (FWHM)	230	230	fs
Relative Slice Energy Spread @ Entranc < 0.01	0.025	%	
Saturation Length	87	25	m
FEL Fundamental Saturation Power @ Exit 8	17	GW	
FEL Photons per Pulse	1.1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
Transverse Coherence	Full	Full	
RMS Slice X-Ray Bandwidth	0.06	0.24	%
RMS Projected X-Ray Bandwidth	0.13	0.47	%

* photons/sec/mm²/mrad²/ 0.1%-BW

Letters of Intent (as of Aug 04) User Program Schedule

2004	15-Mar	Call for letters of intent to be distributed widely	\checkmark
	21-Jun	Letters of Intent due	\checkmark
	8-9 July	SAC: review LOIs, review proposal guidelines	\checkmark
	1-Aug	LCLS/SSRL inform selected teams, move to proposal stage	~
2005	1-Feb	Full proposals due to LCLS/SSRL	
	15-Feb	SAC review of full proposals	
	1-Mar	Proposals approved by LCLS/SAC	
	1-Apr	Proposals submitted to funding sources	
	1-Oct	Planned LCLS construction start	
2008	1 Oct	Planned LCLS operations start	

Letters of Intent

Types

- Category A: Complete Endstation
- Category B: Specific Science Goals
- Category C: Technical Innovations

Response

- Total of 32 received
- 256 Independent investigators
- 91 Institutions

LCLS SAC Response

Identified 5 Thrust Areas

- Atomic Molecular and Optical Physics
- Pump/probe high-energy-density (HED) physics
- Nano-particle and single molecule (non-periodic) imaging
- Pump/probe diffraction dynamics
- Coherent scattering at the nanoscale

First Experiments-SAC Response

SLAC Report 611

Femtochemistry

Nanoscale Dynamics in Condensed matter Pump/probe diffraction dynamics

Coherent scattering at the nanoscale

Atomic Physics

Atomic Molecular and Optical Physics

Plasma and Warm Dense Matter

Pump/probe high-energydensity (HED) physics

Program developed by international team of scientists working with accelerator and laser physics communities

Structural Studies on Single Particles and Biomolecules

FEL Science/Technology

Nano-particle and single molecule (non-periodic) imaging

LCLS SAC Response (cont'd)

- All Lol's were reviewed and fit into thrust areas
- Supported Short pulse (beyond baseline) R&D
 - Will enable new science
- LCLS efforts in AMO and detector development (endstation systems) important for early turn on

User workshop held in Fall 2004

Thrust areas:

- (1) Coherent scattering at G.B. Stephenson* the nanoscale K. Ludwig
- (2) Pump/probe diffraction K. Gaffney* dynamics D. Reis
- (3) High energy density (HED) physics
- R. Lee* P. Heimann

J. Larsson

- (4) Nano-particle/single J. Hajdu*molecule(non-periodic) J. Miaoimaging H. Chapman
- (5) Atomic, molecular, and optical science

Team leader

L. DiMauro* N. Berrah

- SSRL/LCLS Contact
 - S. Brennan
 - A. Lindenberg

- J. B. Hastings
- J. Arthur

J. B. Hastings

The way forward: Major Item of Equipment

- Funded thru BES
- Science community develops the science case
- The project engineering and management is the responsibility of SLAC/SSRL
 Full rigor of DoE review is in place
 Insures compatibility, common design, ease of maintenance

MIE Cont'd Team Responsibilities

- Thrust area teams responsible for the science
- Thrust area teams provide the specifications for the instruments
- Collaborate on the conceptual design
- As appropriate given responsibility for construction of specific components

LCLS Science Thrust Areas

- Atomic, Molecular, and Optical (AMO) science
- High-energy-density (HED) science
- Diffraction studies of stimulated dynamics
- Coherent-scattering studies of nanoscale fluctuations
- Nano-particle and single-molecule (non-periodic) imaging

BES approach to the Thrust Areas

- AMO science will be included in LCLS construction project
- HED science deemed to be outside the mission of BES

LUSI Scope

- Build instruments for hard x-rays that address 3 Thrust Areas: X-ray pump-probe, XPCS, Coherent x-ray imaging
- Include one additional instrument, to address the soft-xray portions of pump-probe and coherent imaging Thrust Areas
- Detector development

Detector Development

- LCLS experiments need new detector technology
 - Dual development strategy for fast 2-d detectors
 - Several technologies look promising, no clear leader
 - LCLS will pursue one strategy
 - LUSI will try a different technology
 - Both prototypes should be ready by 2009

LUSI Phased Approach

First LCLS light may come in mid-2008
Budget will not support building 4 instruments by 2008

Phased approach

2 instruments in phase 1 *sufficient functionality by mid-2008 to begin experiments phase 1 instruments can support early work in all four areas complete phase 1 while phase 2 is ramping up*remaining instruments in phase 2 *begin phase 2 after 2008*complete all work in 2012

Role of the LCLS Science Teams

- Teams are responsible for preparing physics requirements for instruments
- Teams have designated leaders
- Quarterly meetings at SLAC with leaders
- Start weekly teleconferences soon
- Yearly general meeting
- Web site is up: <http://www-ssrl.slac.stanford.edu/lcls/lusi/>

LUSI web site

http://www-ssrl.slac.stanford.edu/lcls/lusi/

LCLS Ultrafast Science Instruments

Home
Project Pages
LUSI Instruments
Uniqueness of FEL X-rays
X-ray FEL Science
About LCLS
Science with LCLS
Calendar & Meetings
Contact Us

A suite of x-ray instruments for exploiting the unique scientific capability of the Linac Coherent Light Source will be produced by the LUSI project. LUSI hopes to receive major funding starting in 2007, and to build four instruments over a period of about five years. Two of these instruments will be optimized for hard x-ray studies of ultrafast dynamics at the atomic level, addressing basic problems in chemistry and materials science. A third instrument will concentrate on hard x-ray coherent imaging of nanoparticles and large biomolecules. The fourth instrument will give LCLS the capability of using soft x-rays to study magnetic structures and surface chemistry. These instruments will complement other instruments at LCLS, which are directed towards atomic physics and plasma physics. A summary of LCLS scientific

applications can be found here.

Current News:

Job Openings

Meetings:

LUSI Science Group Leaders Meeting October 18-19

SSRL User Meeting - Soft X-ray Workshop Oct 18-19

SSRL User Meeting Oct 15-19, 2005

LCLS FAC Meeting Oct 27 -28, 2005

Steps to achieve CDR

Instrument concept optics, sample, detector, controls First level design ray trace, signal rates Oct-Nov 2005 **Design review** Jan 1, 2006 Second level design component choice, layout, costing CDR first draft Feb 1, 2006 Lehman review June 2006

Latest LUSI Progress

CD0 signed in August, project is official

Initial hiring taking place

Input from potential users is helping to define instruments

Working closely with XES and XTOD groups to develop an optimal layout for experiments

CAD layouts are used to see how instrumentation fits in hutches

A soft x-ray pick-off mirror in the FEE could provide a 'soft x-ray beamline' for Hutch 1 (and maybe Hutch 2), allowing easy switching between experiments

Very large hutches can accommodate large instruments

(XPCS concept with vacuum flight path longer than 5 m)

Plans for FY2006

- Initial funding has been provided (\$1.9M)
- Staff up, including 3 Instrument Scientists
- Prepare CDR
- Lehman review in ~June
- Continue design
- Another Lehman review in ~October

LUSI Summary

- LUSI is on schedule now but needs to pick up the pace
- Will build 4 unique instruments, plus detector R&D
- The next year will be very interesting

Atomic Physics

Formation of Hollow Atoms:

Most basic LCLS experiments, aimed at understanding the physics of interaction of intense, ultra-fast pulse with atoms

Multiphoton Ionization:

Giant Coulomb explosions of Xe clusters

Studies of Warm Dense Matter

"...that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid."

 Γ = ratio between electric and thermal potential energy μ = chemical potential (atom interaction potential)

Astrophysical studies lie in the area of warm dense matter. Largest uncertainties in many applied research areas of chemistry and physics come in the warm dense regime

Intense x-ray probes can characterize the states of heated and compressed matter

• Forward →large size scale →collective modes

Back → small size scale →bound e⁻, free e⁻, f(v)

Challenge is to match experimental and theoretical capabilities for HED studies

Stanford Linear Accelerator enter

Structural Studies on Single Particles and Biomolecules

A bright idea:

Use ultra-short, intense x-ray pulse to produce scattering pattern before molecule explodes

Predicted scattering from a single RUBISCO molecule (Relectronic = 15%)

LCLS

Nanocrystal of lysozyme