Ions, Atoms & Molecules in Intense Fields:of FELs:

I. Precision Spectroscopy & Ionization : Ions

 \mathbf{M}

•

Highly charged ions

Ready to go to - FEL (4.2006)

FEL-EBIT

- Formation
- Cooling
- of highly charged ions . . . up to Hg⁷⁸⁺ Extraction

Spectroscopy of lons

Max-Rlanck-Institu für Kernphysik

Spectroscopy of lons

Explore the Nucleus

Fundamental Symmetries

Extracted Beams

I. Precision Spectroscopy & Ionization : Ions

I. Interaction with Molecular lons

Cold molecular ions

Cold Ion Beam

Trap

Operating at the - FEL . . .

H.B. Pederson, A. Wolf, D. Schwalm, D. Zajfman

Ion Source

Cold molecular ions

How abamolecules sformin in interstellar Uspacese?

Cold molecular ions

I. Precision Spectroscopy & Ionization : Ions

I. Interaction with Molecular lons

mm

III. Few- to Multi-Photon Processes in Atoms, Molecules & Clusters Ultra-Fast Phenomena

Reaction Microscopes The "Cloud Chambers"

animation: R. Dörner et al.

of Atomic & Molecular Physics

FEL Reaction Microscope laser beam electron-detector

ion-detector

- Ultra-high vacuum : p ~ 10⁻¹¹ mbar
- Cold gas-jet : T < 0.1 Kelvin
- Multi-hit delay-line : \emptyset = 12 cm, Δ t > 10 ns

ideal:

Time Structure of Beam:

- separation of micropulses: $\Delta t = 100 \text{ ns}$ 800 ns
- number of micropulses: n = 7200 continuous f = 10 Hz 1. ..2 MHz
- repetition rate:

The HeidelbergGroup

ber

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect

From Single-Photon to Multi-Photon

- Double lonization
- Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

Atoms in Intense Fields

photo absorption Einstein 1905

multi-photon ionization Göppert-Meier 1931

tunnelling ionization

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect

From Single-Photon to Multi-Photon

- Double Ionization
- Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

lax–Rlanck–Ins für Kernphysi

A Photoelectron/-ion with zero energy!

Max-Rlanck-Inst für Kernphysik

lax–Rlanck–Ins für Kernphysik

Attosecond Streak Camera

Atoms in Intense Fields

photo absorption Einstein 1905

multi-photon ionization Göppert-Meier 1931

tunnelling ionization

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect
- From Single-Photon to Multi-Photon
 - Double Ionization
 - Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

Bouble ilohization Fields

photo absorption multi-photon ionization tunnelling ionization single photon 99 eV He²⁺ not existent at all: always many photons 53 for helium!

what about two active electrons

Double Ionization

few photons interact with two electrons

what about two active electrons

complete experiments reliable predictions

"well understood"

two active electrons

complete experiments reliable predictions

"well understood"

two active electrons

two active electrons

differential experimentsmany model approaches

"not understood"

photo absorption

multi-photon ionization

tunnelling ionization

not existent at all: always many photons

53 for helium!

differential experimentsmany model approaches

"not understood"

two active electrons

complete experiments reliable predictions

"well understood"

"no correlated al"

uncorrelated ntial"

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect
- From Single-Photon to Multi-Photon
 - Double Ionization
 - Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

Multiple Ionization

• no fully diff. data

no differential data

total yields

first differential data

Structure Dependence

Structure Dependence

- field assisted,
- strongly correlated,
- 400-attosecond many-electron transition

Reaction Microscope

J. Steinmann F. Spiegelhalter A. Dorn

three-electron system

A Lithium MOT!

First Results from DESY

Intensity Dependence!

Intensity Dependence!

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect
- From Single-Photon to Multi-Photon
 - Double Ionization
 - Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

Electron Correlation:

Electron Correlation:

Electron Correlation:

Outline of the Talk

- Reaction Microscopes
- Introduction
 - Atoms in Intense Fields
 - Attosecond Streak Effect
- From Single-Photon to Multi-Photon
 - Double Ionization
 - Multiple Ionization
- Ultra-Fast Phenomena
 - Attosecond Correlation
 - Pump-Probe: The Molecular Movie

Dissociation Dynamics

Launders, Dörner PRL 87 (2001)

Dissociation Dynamics

"Snapshots" of the time-evolution of intra-molecular potentials

"Movie" of the dissociation reaction

