Femtosecond X-ray studies of strongly correlated electron systems

Matteo Rini

Materials Sciences Division, Lawrence Berkeley National Laboratory

- □ Ultrafast X-Ray experiments (BL 5.3.1)
 - □ Time-resolved <u>NEXAFS studies</u> of the insulator-to-metal phase transition in VO₂
 - Time-resolved <u>X-ray diffraction</u> studies of polariton dynamics in ferroelectrics
- Time-resolved <u>X-ray absorption</u> spectroscopy of a photoinduced spin crossover reaction in solution
 Planned X-Ray experiments (BL 6.0)
 - Structural dynamics and photoinduced phase transitions in Manganites

- beyond single-electron band structure model correlated systems (charge, spin, orbit, lattice)
- beyond simple adiabatic potential energy surfaces

Fundamental Time Scales in Condensed Matter

Atomic Structural Dynamics

fundamental time scale for atomic motion vibrational period: T_{vib} ~ 100 fs

Electronic Structural Dynamics

CCCCC

BERKELEY

fundamental time scales for electron dynamics electron-phonon interaction times ~ 1 ps e-e scattering times ~10 fs correlation time ~100 attoseconds (a/V_{Fermi})

- ultrafast chemical reactions
- ultrafast phase transitions
- surface dynamics
- ultrafast biological processes

- charge transfer
- electronic phase transitions
- correlated electron systems charge/orbital ordering CMR high T_c superconductivity

Ultrafast X-ray Science Rapidly emerging field of research - Physics, Chemistry and Biology

Femtosecond X-ray Science

BERKELEY LAB

time-resolved x-ray spectroscopy

EXAFS – local atomic structure and coordination

NEXAFS – local electronic structure, bonding geometry, (near-edge x-ray absorption fine structure) magnetization/dichroism element specific

molecular systems and reactions

complex/disordered materials

Oxides of Transition Metals (e.g. Cu, Mn, Ni, V...)

Electrons are strongly interacting

1) Unconventional Phenomena (e.g. Mott Insulator, High-T_c superconductivity, Colossal Magnetoresistance, Metal-Insulator transitions,.....)

2) Interesting phenomena and phase transitions at high temperatures

BERKELEY LAB

Jahn-Teller Instability Orbital order

Charge order

Manganites

Spin order

Stripes

Understand interactions between

- **Atomic arrangements**
- Carrier doping/ordering
- Magnetic ordering

Many competing ground states

```
F ( Τ, Η, x, hν, Ρ, Ε...)
```

Phase Control :

Magnetic Field Photo-excitation Electric Field

Pressure

e.g. Manganese Oxides

The "stiffness" of a phase is strongly affected by charge arrangements

The phase of a solid can be controlled by chemical doping or by photo-excitation

Electron-photo-doping

Hole photo-doping

- Exotic transient phases can be created and controlled
- ✓ Fundamental correlation mechanisms can be revealed
- ✓ Giant, ultrafast manipulation of the system's parameters

Ultrafast Structural and Electronic Transitions in VO₂

Ultrafast Structural and Electronic Transitions in VO₂

rrrrr

III

Optical Measurements of VO₂ I-M Transition

Transient photo-doping - new information compared to adiabatic changes in doping, pressure, temperature, etc. 1.0 VO2 Absorption Coefficient Optical Pumping - excited state 2.7 $3d_{\pi}$ 3d, | 0.8 hv > 0.7 eV E O₂ Refractive hν 3d., Rutile Monoclinic > 50% holes Metal 1.7 0.6 probe VO₂ Si₃N₄ (tunable) (45 nm) 1.2 (150 nm) Insulator pump (800 nm) 0.4 2000 0 1000 3000 delay reflectivity transmission Delay (fs) Time scales: structural ~100 fs (T_{vib}) Cavalleri et al. Phys. Rev. B 70, 161102(R) (2004) electronic <1 fs (a/V_{Fermi})

Rini et al Optics Letters 30,1,(2005)

Rini et al Optics Letters 30,1,(2005)

What causes the formation of the metallic state?

Mott-Hubbard insulator: e-e correlation

 \square Prompt collapse of the bandgap

Band-like insulator: change of symmetry

Pump-probe for different pulse durations

Femtosecond NEXAFS Measurements in VO₂

A.Cavalleri et al., Phys. Rev. Lett., 95, 067405, (2005).

Femtosecond NEXAFS Measurements in VO₂

rrrrr

BERKELEY

III

A.Cavalleri et al., Phys. Rev. Lett., 95, 067405, (2005).

Femtosecond NEXAFS Measurements in VO₂

BERKELEY LAB

A.Cavalleri et al., Phys. Rev. Lett., 95, 067405, (2005).

Valency Change: Dynamic Chemical Shift

rrrrr

Tunable femtosecond X-rays at the ALS

Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,(1996).

Schoenlein et al., Science, 287, (2000)

Upcoming Undulator Beamline

Femtosecond X-ray Flux

★ HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 30 W

Plasma source flux in mrad² laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 10⁵ improvement) Cu K_α - 10¹⁰ ph/s/4π (proj. 10¹² with Hg target) cont. 6x10⁷ ph/s/4π (integ. from 7-8 keV)

> *ALS typical average x-ray flux* undulator ~10¹⁵ ph/s/0.1% BW bend-magnet ~10¹³ ph/s/0.1% BW

rrrrr

BERKELEY

Π

Stevens et al, Science 291 (2001) 627

Time-resolved 006 Structure Factor

BERKELE'

Optical Exp: time-resolved Pockels effect BERKELEY **Front view** Optical Pump Optical Probe ۲

rrrrr

BERKELEY

Ta-O displacement along the c axis

rrrr

BERKELEY

Fe["] Spin-Crossover Molecules

Motivation:

- relationship between structure, electronic, and magnetic properties
 Do the structural distortions facilitate the spin-crossover reaction?
- electron transfer mechanistic role in biochemical processes (cytochrome P450)
- magnetic and optical storage material

Fe["] Time-resolved XAS

rrrrr

Π

Fs X-ray Diffraction and Absorption at the ALS

Metallic

Electron-delocalizing double-exchange

F

Charge-localizing real-space ordering

Phase competition Delicate balance

VOLUME 74, NUMBER 25

PHYSICAL REVIEW LETTERS

19 JUNE 1995

Double Exchange Alone Does Not Explain the Resistivity of La1-xSrxMnO3

A. J. Millis, P. B. Littlewood, and B. I. Shraiman AT&T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 12 January 1995)

The $La_{1-x}Sr_xMnO_3$ system with $0.2 \le x \le 0.4$ has traditionally been modeled with a "double-exchange" Hamiltonian in which it is assumed that the only relevant physics is the tendency of carrier hopping to line up neighboring spins. We present a solution of the double-exchange model, show it is incompatible with many aspects of the data, and propose that in addition to double-exchange physics a strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn *d* level plays a crucial role.

Pr_(1-x)Ca_x MnO₃: Statically Distorted

Not quite cubic

Always Insulating for zero field

Z(Pr)=59

Z(Ca)=20

Y. Tomioka et al. Phys Rev. B 53 R1689 (1996)

CMR in $Pr_{(1-x)}Ca_x MnO_3$

CMR

Always Insulating at 0 field dR/dT < 0

Colossal Photo-resistance: Pr_(1-x)Ca_x MnO₃

Colossal photo-resistance

Visualization of the Local Insulator-Metal Transition in Pr_{o.7}Ca_{o.3}MnO₃

BERKELEY L

Manfred Fiebig,* Kenjiro Miyano, Yoshinori Tomioka, Yasuhide Tokura

The light-induced insulator-metal transition in the "colossal magnetoresistance" compound $Pr_{o.7}Ca_{o.3}MnO_3$ is shown to generate a well-localized conducting path while the bulk of the sample remains insulating. The path can be visualized through a change of reflectivity that accompanies the phase transition. Its visibility provides a tool for gaining insight into electronic transport in materials with strong magnetic correlations. For example, a conducting path can be generated or removed at an arbitrary position just because of the presence of another path. Such manipulation may be useful in the construction of optical switches.

Fiebig et al. Science 280, 1925 (1998)

timescale: ~ 230 fs

X-ray Induced IMT: $Pr_{(1-x)}Ca_x MnO_3$

Colossal photo-resistance

An X-ray-induced insulatormetal transition in a magnetoresistive manganite

V. Kiryukhin*, D. Casa*, J. P. Hill†, B. Keimer*, A. Vigliante†, Y. Tomioka‡ & Y. Tokura‡§

* Department of Physics, Princeton University, Princeton, New Jersey 08544, USA † Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

[‡] Joint Research Center for Atom Technology (JRCAT), Tsukuba, Ibaraki 305, Japan

§ Department of Applied Physics, University of Tokyo, Tokyo 113, Japan

Kiryiukin et al. Nature 386, 813 (1997)

Phase Transitions Occur in the Electronic Ground State

Vibrational Excitation Experiments

Mn-O Excitation: electronic ground state

Photon Energy

Change in Phase?

Maximum response by pumping at 16.5 μm

Vibrational Excitation

BERKELEY LAB

Next Step: probe quasi-DC conductivity

.....

BERKELEY LAP

Can we drive spincrossover in Co oxides?

Can we coherently control the phase of a solid in the Electronic ground state?

□ Are we driving a first-order phase transition?

Measuring persistent changes in the sample conductivity

BERKELEY

Time-resolved THz/Visible probing of the formation of the metallic phase

□ Time-resolved X-ray experiments:

- Resonant x-ray diffraction: role of charge/orbital ordering
- XANES: investigate Mn-O complex, Mn-3d hybridization with O-2p states

Resonant x-ray diffraction is an effective probe of charge and orbital ordering in manganites

BERKELEY

Zimmerman et al., Phys. Rev. Lett (1999)

Valence and conduction bands in CMR manganites are comprised of hybridized Mn-3d and O-2p states

time-resolved XANES at the O K-edge and Mn $L_{II,III}$ -edge

Measuring local structural distortion of the Mn-O complex resulting from the photo-excitation:

- Polaron effects
- •Ionization of the Jahn-Teller instability
- •Changes of the Mn-O-Mn bond angle (influencing
- the double-exchange mechanism)

Oxygen K-edge

2p character hybridized with 4sp

2p character hybridized with 3d

Sensitivity to changes in the hybridization for unoccupied states of mixed O-2p and metal-3d character

Subias et al., Surf. Rev. Lett (2002)

O K-edge, Mn L-edge

Sensitivity to the rare-earth cation

Sensitivity to the doping ratio

De Groot et al., Phys. Rev. B (1989)

Mn L-edge XANES: probes unoccupied states of metal-3d character Chemical shift: changes in the Mn oxidation state

Topics and People

Fs NEXAFS I-M Transition in VO₂

S. Fourmaux, J.C. Kieffer Universite' du Quebec

> R. Lopez, R. Haglund Vanderbilt University

> > **T. Dekorsy** Univ. Konstanz

Vibrational Excitation in CMR

Y. Tomioka, Y. Tokura University of Tokyo

Fs XRD in LiTaO₃

K.A. Nelson MIT **J. Itatani, S. Koshihara** KEK and Tokyo Tech.

M. Khalil (Fe II) A. Cavalleri R.W. Schoenlein Materials Sciences LBNL