

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring

F.Fernandez and X.Queralt

Trieste, May '09

SUMMARY

Intro

- •The RF cavities
- •The RF bunker
- •The PSS
- •The Detection systems
- Measurements
 - With/without reinforcement
 - On surface
 - Online acquisition
 - Spectrum
- Simulations

INTRODUCTION

INTRODUCTION: THE CAVITIES

RF Storage Ring Cavity

INTRODUCTION: THE BUNKER

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring - F.Fernandez and X.Queralt

INTRODUCTION: THE PSS

INTRODUCTION: DETECTION SYSTEMS

PORTABLE DETECTORS (IN & OUT) DOSIMETERS (IN & OUT) SPECTROMETER ("IN") ONLINE MONITORING (IN)

COMPANY	MODEL	ENERGY RANGE	DETECTION RANGE
THERMO	SmartION Mini 2100S	>10keV	0-500mSv/h
FLUKE	Victoreen 451P	>25keV	<50mSv/h
THERMO	FH40 G-L10	>30keV	10nSv/h - 100mSv/h
THERMO	FHZ 672 E-10:	48 keV - 4.4 MeV	1nSv/h - 100mSv/h
THERMO	RadEye PRD	30 keV – 1.3 MeV	0.01 µSv/h – 250 µSv/h

80kW (max power) @ 20%

ACCUMULATED GAMMA DOSE IN ONE MONTH: ~10working hours 80kW (max power) @ 20%

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring - F.Fernandez and X.Queralt

SHIELDING REINFORCEMENT

80kW (max power) @ 20%

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring - F.Fernandez and X.Queralt 13

RAD. MEAS.: WITH REINFORCEMENT

WORK PERMITS FOR WORK ABOVE 2.5 m ARE REQUIRED - ADMINISTRATIVE CONTROL

80kW (max power) @ 20%

80kW (max power) @ 100%

Power and gamma dose rate vs. time

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring - F.Fernandez and X.Queralt

RAD. MEAS.: ONLINE ACQUISITION

Gamma dose rate inside bunker vs. RF power (Apr 29th)

RAD. MEAS.: ONLINE ACQUISITION

Radiological studies during the conditioning of the RF cavity for the ALBA Storage Ring - F.Fernandez and X.Queralt

RAD. MEAS.: X-RAY SPECTRUM

RAD. MEAS.: X-RAY SPECTRUM

Maximum e-Energy vs. RF power

SIMULATIONS

SIMULATIONS

SIMULATED EFFECTIVE DOSE RATE DISTRIBUTION: The electron current is normalized (2.8-10¹⁰ electrons/s // 2.5nA) to have 8uSv/h after the first layer (0.5cm of lead).

THANK YOU FOR YOUR ATTENTION