RADSYNCH09, May 2009, ELETTRA, Trieste

Radiation Protection Concept and Commissioning of the PETRA III Storage Ring

Albrecht Leuschner, DESY, Hamburg, Germany

PETRA III Milestones

May 23, 2005	Signing of Agreement for the Construction of PETRA III
June 18, 2007	Construction equipment marched up
Sept. 14, 2007	The foundation stone for the PETRA III experimental hall was laid
May 20, 2008	The reassembly of all magnets in the "old" tunnel was completed
April 16, 2009	Clear the ring for PETRA III , first beam

PETRA III at DESY

Experimental hall

PETRA III among other sources

facility	circum. [m]	energy [GeV]	current [mA]	# e in ring	e in 2000 h
ESRF	840	6	200	3.7 • 10 ¹²	1.7 • 10¹⁵ operation 1999-2003
SPring8	1436	8	100	3.0 • 10 ¹²	0.7 • 10 ¹⁵ Тор-ир @ т = 10 h
PETRA-III	2304	6	100	5.0 • 10 ¹²	6.0 • 10 ¹⁵ Top-up @ T = 2 h
DIAMOND	562	3	300	3.7 • 10 ¹²	0.9 • 10¹⁵ Тор-ир @ т = 10 h
DORIS-III	289	5	800	5.0 • 10 ¹²	2.0 • 10¹⁵ permission @ τ = 5 h

Corset

facility	injected e in 2000 h	Loss per standard cell	Dose Limit [mSv]	Lateral Shield status	Lateral Shield formula
ESRF	1.7 • 10¹⁵ operation 1999-2003	0.8 • 10¹⁴ 5 %	1	1.0 m нс	0.7 m нс
SPring8	0.7 • 10¹⁵ Тор-ир @ т = 10 h	1.5 • 10 ¹⁴ 20 %	12	1.0 m sc	0.6 m sc
PETRA-III	6.0 • 10 ¹⁵ Тор-ир @ т = 2 h	3.0 • 10 ¹⁴ 5 %	1	1.0 m нс	1.0 m нс
DIAMOND	0.9 • 10¹⁵ Тор-ир @ т = 10 h	0.9 • 10 ¹⁴ 10 %	1	0.95 m нс	0.6 m нс
DORIS-III	2.0 • 10¹⁵ permission @ τ = 5 h	0.6 • 10 ¹⁴ 3 % 9m / 300m	1	0.8 m sc	0.8 m sc

Storage ring shielding

Heavy concrete (barite)			Standard concrete		
	density: 3.35 g/cm ³	density: 2.35 g/cm ³ thickness: 2 × 50 cm			
thickness: 30 cm	optics hutch	density: 3.7 g/cm ³ thickness: 100 cm	Storage ring tunnel	Heavy concrete (hematite)	

Beam Losses in Sector 2 from Injections in PETRA-III

R 20/2t

Integrated Dose: Tunnel roof: 1.8 µSv

CONTRACTOR IN CONTRACTOR

Integrated Dose: Office Gallery: 0.1 μSv

Beam Parameter:Energy:6 GeVCharge per Burst:2.5 nCTotal Charge:1.8 μCElectrons:?110¹³

Permanent dipole magnet for Safety 10

5

deflection angle

Shielding calculations Optics hutch

FLUKA – 2005: Bremsstrahlung, Neutrons

Few bunch mode: 100 mA Loss: 10¹⁵ electrons per year

STAC8 v.2.3 Synchrotron radiation calculations by Asano-san

Spectroscopy beam line Multi bunch mode: 200 mA Power: 20 kW

Albrecht Leuschner

Optics hutch shielding - bremsstrahlung + neutrons

Loss: 1×10¹⁵ electrons

equivalent to

100 mA × 6000 h 14.5 m straight 3.5×10⁻⁰⁸ mbar air

PLANNING GOAL: 3 mSv

1.0E+04 1.0E+03 1.0E+02 1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07

No Safety Measurements for the Permanent Magnet yet

Further commissioning will be done in the next few months.

Thank you for your attention !

Albrecht Leuschner