The FERMI project @ Elettra: radiation protection and safety issues

<u>G.Tromba</u>¹, K.Casarin¹, F.Longo^{1,2}, E.Quai¹, E. La Torre¹ and A.Vascotto¹

⁽¹⁾ Sincrotrone Trieste ⁽²⁾ Università di Trieste, INFN – Sezione di Trieste

Outline

- Past and present layout of the Elettra facility
- ✤ The main features of the FERMI project
- Linac upgrade program
- Undulator and experimental hall
- Radiation protection criteria and dose limits
- The Personnel Safety System
- Radiation monitoring
- First benchmark of Geant4 simulation code

The original layout of Elettra

Linac working parameters: injection energy: 1-1.2 GeV Max. average current: 0.1 µA Repetition rate: 10 Hz

Ring operation modes (multibunch) :

Energy: 2 GeV, 320 mA Energy: 2.4 GeV, 140 mA

The full energy injector

Linac pre-injector:

Energy: 100 MeV Maximum charge/pulse : 3 nC <u>Rep. Ra</u>te: 3 Hz

Booster:

Injection energies: 2 or 2.4 GeV

Maximum injected charge/pulse: 2 nC for refill

Maximum injected charge/pulse: 0.2 nC for top-up

The FERMI project

FERMI - 4th generation source: single-pass seeded FEL, based upon the conversion of the original 1.2 GeV linac.

FERMI general layout

Energy: 1 ÷ 1.8 GeV Fundamental wavelength range: FEL 1: 100 ÷ 20 nm FEL 2: 20 ÷ 3 nm

The linac tunnel upgrade

- Extension of the original machine tunnel gallery (upstream)
- Substitution of the termoionic gun with a high brightness photoinjector
- Addition of 7 new accelerating sections donated by CERN
- Installation of a X-band accelerating section to linearize the longitudinal phase space
- Installation of two buch compressors to increase the peak current
- Installation of a new LLRF system to stabilize the phase and amplitude of the accelerating field
- Beam energy feedbacks
- 50 Hz repetition rate (instead of the original 10 Hz, new HV modulators and RF plants)

Machine layout: linac and FEL

RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

FEL Properties – Self Amplified Sontaneous Emission (SASE)

Electrons start to irradiate at the undulator entrance -> spontaneus emission -> modulation -> coherent emission

(SASE needs very long undulators)

RADSYNCH 09, Trieste May 21-23 2009 - G.Tromba

9

FEL Properties High Gain Harmonic Generation - HGHG

Bunching at harmonic λ

- fully temporally coherent source
- control of pulse length
- control of spectral parameters

External seeding laser is used to enhance bunch modulation -> further modulation in undulator -> pulse compressor (to further enhance modulation) -> radiator for coherent emission tuned *at fundamental* **or higher harmonic frequency** *This approach allows to reduce the undulator length and increase the photon energy*

FIG. 4: Single shot HGHG spectrum for 30 MW seed (blue), single shot SASE spectrum measured by blocking the seed laser (red) and simulation the SASE spectrum after 20 m of NISUS structure (green). The average spacing between spikes in the SASE spectrum is used to estimate the pulse length.

Li-Hua Yu DUV-FEL

RADSYNCH 09, Trieste May 21-23 2009 - G.Tromba

FERMI FEL

Cascade to HGHG FELs (to further enhance modulation and emit at higher harmonics) – progressively smaller slices of beam are selected

RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

FERMI FEL

1st TIMEX PCM, Univ. of Camerino RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

The beginning of the linac with the first 100 MeV diagnostic line

The undulator hall – spreader area

The beamdump and the beamlines frontends

Beamlines and photon diagnostic systems

Beamlines					
DIPROI:	Diffraction and Projection Imaging				
EIS:	Elastic and Inelastic Scattering				
LDM:	Low Density Mater				

The linac shielding design - original

Parameters considered for the Linac as Elettra injector (1992):

- maximum acceleration energy: 2 GeV
- max average current: 0.1 μA
- acceleration efficiency: 20%
- beam loss scenario: continuous total beamloss at the end of the linac and along the linac-to-ring transfer line during beam injection
- free area, full occupancy outside the tunnel. Dose limits: 0.1 mSv/year

Shielding thickness (roof)

0 - 600 MeV -> 2 m ordinary concrete ($\rho = 2.3 \text{ g/cm}^3$) Higher than 600 MeV:

0.65 m and 0.00 MeV.

0.65 m ordinary concrete ($\rho = 2.3 \text{ g/cm}^3$) +

1.35 m heavy concrete ($\rho = 3.6 \text{ g/cm}^3$)

Shielding requirements for FERMI

- Shielding of the upstream extension of the linac tunnel:
 - Kept the same thickness of the first 600 MeV i.e. 2 m ordinary concrete
- Radiation Protection assumptions for the undulator hall:
 - Energy & current: same as for the previous linac (2 GeV, $0.1 \mu A$)
 - Beam loss scenario: 100% beamlosses at beamstopper, scrapers, at spreaders, at BPMs, along the undulator sections.....
- Criteria for the shielding power of the tunnel roof:
 - Free area with full occupancy anywhere -> thickness = 2.5 m ordinary concrete
- Criteria for the undulator hall shielding wall:
 - Free access area with low occupancy (1/16) in the vicinities of the shielding wall
 - Free access area with full occupancy at the user stations
 - -> thickness = 3 m ordinary concrete

Areas classification and yearly dose limits

<i>Controlled</i> areas	<i>itrolled</i> neases controlled by safety system) Delimited areas close to activated components and beamdumps with linac in <i>shutdown</i> Delimited regions around modulators		(*) 20 mSv			
<i>Supervised</i> areas	Laser hall and Service area during commissioning	2 mSv	6 mSv			
Free (not classified)	Experimental hall – low permanence areas	0.5 mSv	1 mSv			
Free (not classified)	Experimental hall – user stations Laser hall and Service area during normal operation	0.1 mSv	1 mSv			

(*) Limits for personnel and public established by Italian regulations in compliance with the *European/Euratom instructions*

RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

The FERMI Personnel Safety System (PSS)

- PSS is based on Programmable Logic Circuits (PLCs) of high safety level (class 4).
 - Main characteristics:
 - Redundancy
 - Fail safe phylosophy
 - Diversification of actuators/controls

The FERMI Personnel Safety System (PSS

- **Elements controlled by PSS:**
 - photo-injector modulator
 - klystron modulators feeding the accelerating sections
 - beamstopper at the end of the linac
 - beamstopper at the beamlines front-end
 - gamma monitors status
 - HV power supply of bending magnets
 - Toroids for measuring the beam current in the transfer-line to the dump.

- Determine the access conditions to machine tunnel
- Define the conditions to enter the beamlines hutch
- Give the consent to open the beamlines beamstoppers
- Additional passive safety elements: permanent magnets, used (as third level) to prevent accidental beam channeling into the beamlines

Radiation monitors (ELSE)

Gamma dosimeters (interlocked with PSS)

- type: pressurized ionization chamber Ar6.4-N9.6 (16 atm)
- model: Centronic Mod. IG5
- response as a function of energy:
 - 80 keV 120 keV: ±20%
 - 120 keV 2 MeV: ±5%
- equivalent doserate range:
 0.01 µSv/h 0.1 Sv/h (7 decades)
- environmental conditions: 0÷ 50°C
- precision on environmental doserate measurements: ± 5%
- automatic change of scale based on microprocessor
- good behavior in a pulsed radiation field (talk by M.Ballerini)

Neutron monitors

- type: Rem counter (BF₃)
- model: FAG Biorem
- energy range: 0.025 eV 15 MeV
- equivalent doserate range: up to 0.4 Sv/h

Future activities

- Definition of shielding around the first mirror in the beamlines hutch
- Positioning of local shielding in the tunnel to reduce the channeling of secondaries into the beamlines pipes
- Evaluation of shielding in the vicinities of ducts for lasers and cables
- Estimate of induced radioactivity

Need to validate a Montecarlo code able to simulate complex geometries

Geant 4

- Geant4 is the successor of GEANT3, the world-standard toolkit for HEP detector simulation.
- Geant4 is one of the first successful attempt to re-design a major package of HEP software for the next generation of experiments using an Object-Oriented environment.
- A variety of requirements have also taken into account from heavy ion physics, CP violation physics, cosmic ray physics, astrophysics, space science and **medical applications**.
- In order to meet such requirements, a large degree of functionality and flexibility are provided.
- G4 is not only for HEP but goes well beyond that.

Budker Inst. of Physics IHEP Proto ino MEPHI Moscow Pittsburg University

4°

Benchmark of semi-empirical formulas vs. experimental measurements and **Geant 4** simulations (I preliminary validation) thanks to the support of Francesco Longo

Available approaches for gamma Source Term:

 W. P. Swanson, "Radiological safety aspects of the operation of electron linear accelerators", Technical Reports Series N. 188, IAEA, 1979
 → utilized for doserate evaluation at 0° and 90°

 G.Tromba, A.Rindi, M.Favretto, "The Shielding of Electron Accelerators : A Montecarlo Evaluation of Gamma Source Terms", Proc. of 2nd European Particle Acc. Conference, 1990

 \rightarrow utilized for doserate evaluation at 0° and 90°

- X. S. Mao et al., "90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons", SLAC-PUB-7722, January 2000
 - \rightarrow utilized for doserate prediction at 90°
- V. Vylet, J. C. Liu, "Radiation Protection at high energy electron accelerators", Rad. Prot. Dos., V.96, No. 4, 2001.
 - \rightarrow utilized for doserate prediction at various angles

Experimental measurements layout

50 cm thick concrete shielding

E = 0.91 GeV Cilindrical Target (BST): Cu

Diameter and height = 8 cm

Pulse length: 70 nsec

Current/pulse: 1 – 8.5 mA

Repetition rate: 10 Hz (tests performed in 2002 and reported at RADSYNCH02, ESRF)

> Elettra Service Area

machine tunnel

PTW ionization chambers characteristics

	PTW model 32002	PTW model 32003						
Volume	1.000 cm ³	10.000 cm ³						
Response	3-10 ⁻⁵ C/Gy	3-10 ⁻⁴ C/Gy						
Leakage	± 1.10 ⁻¹⁴ A	± 1-10 ⁻¹⁴ A						
Polarizing voltage	max. 400V	max. 400V						
Cable leakage	5-10 ⁻¹² C/(Gy⋅cm)	5-10 ⁻¹² C/(Gy-cm)						
Wall material	POM (CH ₂ O) _n	POM (CH ₂ O) _n						
Wall thickness	3 mm	3 mm						
Area density	470 mg/cm2	470 mg/cm2						
Range of temperature	+ 10° C + 40° C	+ 10° C + 40° C						
Ion collection time	300 V: 52 ms	300 V: 0.22 s						
	400 V: 39 ms	400 V: 0.16 S						

		PTW model 3200)2	PTW model 32003						
Saturation behaviour	Polarizing voltage	99% saturation	99.5% saturation	99% saturation	99.5% saturation					
Max dose rate at continuous irradiation	300 V	0.25 Gy/h	0.12 Gy/h	14 mGy/h	7.1 mGy/h					
	400 V	0.44 Gy/h	0.22 Gy/h	25 mGy/h	13 mGy/h					
Max dose per irradiation pulse	300 V	2.4 μGy	1.2 μGy	0.57 μGy	0.29 μGy					
	400 V	3.2 μGy	1.6 μGy	0.76 μGy	0.38 μGy					

RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

Simulated geometry 1 event

elettra

Benchmark results (preliminary)

FERMI time schedule

FERMI INTEGRATED INSTALLATION		2009 2010										2	1							
AND C	OMMISSIONING PLAN	1 2	3	4 5 6	7	8	9 10	11 12	1	2 3	4	5	6	78	9	10	1 12	1	2 3	4
Civil Engineering	Linac above ground works	Î												İ						
orrin engineering	Main FERMI construction: 25/03/09 - 13/05/2010																			
	Network and Layout																			
	Drilling holes, building supports in concrete																			
	Temporary Radioprotection Wall after BC1																			
	Accelerating sections Linac 0 and Linac 1																ļ			
Installation 1 st phase	Support Tables from Gun through BC1																			
2009	PC Gun																			
2009	Magnets and PS from Gun through Laser Heater																			
	Diagnostic and Vacuum from Gun through LH													ļ			ļ			
	Radiofrequency Plants for Gun and LINAC 0																			
	Waveguide runs for Gun and L0	ļ																		
	Tertiary Water System for L0																			
Commissioning 1 st phase	Pre-Beam Commissioning: Gun - LH																			
	Beam Commissioning: Gun - LH																			
	Magnets and PS from L1 through BC1																			
Installation 2 nd phase	Diagnostics and Vacuum from L1 through BC1													ļ			ļ			
2009	Cabling from L1 through BC1					<u> </u>														
	Waveguide runs for L1	ļ																		
	Tertiary Water System for L1																			
Commissioning 2 nd phase	Commissioning: Gun, LH, BC1																			
	Linac L2-L4, TLS, DBD																			
	Remove temporary wall, install C5 (ACCT_L02.01)																			
Installation 3 ^{ra} phase	SCL, SFEL1, SFEL2, FEL-1 and 2 (no Und), MBD											_								
2010	PADReS Installation													ļ			ļ			
	DIPROI Beamline Installation					ļ														
	LDM and EIS Beamline Installation																			
Commissioning 3 ^{ra} phase	Commissioning: L2-L3-BC2-L4-TLS-DBD																			
Commissioning 4 ^m phase	Commissioning: TLS-DBD-SFEL1-MBD																			
Installation 4 ^m phase	FEL-1 Undulators																			
Commissioning 5 th phase	Commissioning: FEL1, PADReS and DIPROI																			
	Commissioning: Seeded HG, LDM and EIS																			
OPERATION	FERMI OPERATIONS: Start January 2011																			

RADSYNCH 09, Trieste May 21-23 2009 – G.Tromba

Acknoledgements

To the FERMI@elettra team and in particular to D.Cocco, G. de Ninno, S.Dimitri, M. Svandrlik, G.D'Auria

Thanks for your attention