

5th International Workshop on Radiation Safety at Synchrotron Radiation Sources

Development and Experimental Performance Evaluation of a Dose-Rate meter for Pulsed Beam.

A. Vascotto¹, K. Casarin¹, S. Sbarra¹, <u>M. Ballerini²</u>, G. Merlino²

¹Sincrotrone Trieste S.C.p.A. Strada Statale S.S.14 km 163.5, 34012 Basovizza, Trieste, Italy

²Else s.r.l., *Via Pier della Francesca 26, 20090 Trezzano sul Naviglio, Milano, Italy*

TRIESTE, 22 May 2009

Contents

• Preliminary Study

- Silena Gamma Radiation Monitor
- Experimental front-end electronics

• Development of a new front-end electronics

- **Requirements**
- Measurement Technique

• Testing Results

- Pulsed beam response
- □ Long term stability

Conclusions

Environmental Gamma Radiation Monitoring System

Silena Gamma Radiation Monitor:

- High pressure Ion Chamber Detector mod. Centronic IGC5/A6.4 N9.6
- High voltage power supply
- 6 decades linear amplifier
- Auto-ranging & A/D Converter
- Digital Rate-meter & Relay I/O Boards

TRIESTE, 22 May 2009

Performance of the Silena Gamma Radiation Monitor

- stable radiation levels or continuous pulsed radiation field
 - □ Good accuracy and linearity
 - Excellent long term stability at natural background radiation levels
- fast and wide fluctuations of the radiation levels or short time, intermittent high intensity pulsed radiation field
 - □ Good accuracy and linearity within the first 3 decades (max dose value of 250nGy for 1s fixed integration time)
 - **First stage saturation and wrong selection of gain amplifier**
 - > over the 3rd decade
 - > when full scale change is required, because of different dose values

An experimental acquisition system was design

Experimental front-end electronics

• Main features

- Output voltage signal of the amplifier proportional to the charge accumulated within the integration time.
- □ *Remote control of the integration time. Options available: 100µsec, 1ms, 10ms, 100ms, 1s.*
- □ No loss of the charges generated by the detector and continuous integration of the input signal.

TRIESTE, 22 May 2009

Preliminary test in high energy pulsed radiation field

• **Objectives**

- Study the response of the front-end experimental acquisition system
- □ Define the requirements for the new front-end electronics

Linac beam operating at 900 MeV with 70 nsec pulse duration

Different electronic set-up of the experimental acquisition system was evaluated ...

TRIESTE, 22 May 2009

New front-end electronics development

- Main Requirements
 - Good accuracy and long term stability with very low input current (10⁻¹⁴A) at natural background radiation level
 - Capability to process high number of charges within a very short time interval (up to100nC in 1ms)

□ Fast time response (<2ms)

- □ Good linearity within 7 decades dynamic range up to 10⁷A (high radiation dose rate)
- Hardware & Software compatible with existing Silena Gamma Monitor (modular electronic board level)

Measurement Technique

Operation mode

- Charge transferred to capacitor C2 every 1ms by SW1 (integration time)
- Charge in C2 reset every 1ms or hold by SW2, depending on output voltage level
- □ X1 and X10 output signal cyclically sampled by the ADC

Dose rate, as the sum of 1000 individual integrated values, calculated every 1 s by the u-controller, taking into account the conversion factor

• Important features:

- Switch charge injections neutralization
- Offset error correction
- Thermal drift compensation

Linearity

Measurements with current generator

TRIESTE, 22 May 2009

Test Conditions & Layout

- Experimental conditions
 - □ Linac beam operating at 900 MeV with 70 nsec pulse duration
 - Repetition rate 10Hz
 - Number of pulses 1, 5 and 10 with linac currents of 1mA, 2mA, 5mA, 10mA, 15mA

Pulsed Beam Response

TRIESTE, 22 May 2009

Comparison with reference system

TRIESTE, 22 May 2009

Comparison with reference system

TRIESTE, 22 May 2009

Comparison with reference system

Continues Pulsed Beam Response

TRIESTE, 22 May 2009

Long Term Stability

	G19 Silena	GN18 Gamma ELSE	GN15 Gamma ELSE
Minimum	50,4 nSv/h	98,4 nSv/h	79,7 nSv/h
Maximum	55,7 nSv/h	104,0 nSv/h	84,0 nSv/h
Average	51,9 nSv/h	102,9 nSv/h	82,3 nSv/h
Stand.Dev.%	1,26%	0,65%	0,82%

TRIESTE, 22 May 2009

Conclusions

- Good accuracy and long term stability with very low input current (10¹⁴A) at natural background radiation level
- Good linearity within 7 decades dynamic range up to 10⁻⁷A (high radiation dose rate)
- Capability to process high number of charges within a very short time interval (up to 100nC in 1ms)
- Fast time response (<2ms)
- Capability to detect single shot radiation (e.g. storage ring beam dump) tested up to 3.5 nC/pulse (corresponding to ~4.3 uGy/pulse)
- Simple calibration of the electrometer through digital offset and gain.

ELSE Electrometer

TRIESTE, 22 May 2009

Radiation monitors inside Elettra Service Area

TRIESTE, 22 May 2009

WE WORK WITH ENERGY IN RADIATION TECHNOLOGY

- Founded in 1990 design and manufacture analog and digital instrumentations for nuclear radiation application fields
 - □ Industrial and research nuclear applications
 - Radiation Protection Instrumentation
 - Environmental Nuclear Radiation Monitoring Systems for PET-Cyclotron facilities & Nuclear Medicine
- Services
 - Hardware & Software development
 - □ State-of Art Custom design solutions
 - □ System application

El.Se. Srl pays careful attention to the "customer satisfaction" and works in synergy with their customers, committed to excellence.

Product & Market

Product lines

Environmental Gamma & Neutron Radiation Monitoring Systems

□ Alpha/Beta particulate Monitoring Systems

□ Air Monitoring Systems

Counting Systems & Contamination Monitors

Pedestrian & Portal Systems for SNM

Special System for decommissioning

Main Customers

Hospitals, Environmental Agencies, Universities and Research Institutes

Particle Accelerators

Radiology/Radiotherapy Centers & Nuclear Medicine Laboratories

□ Nuclear Power Plant & Industrial Companies

Gamma & Neutron Monitoring Systems

SATURN I Gamma/Neutron Monitors with fixed or removable probes

Mercury Dual GM Probe Gamma Area Monitor

Nausicaa Gamma Monitor

Alpha/Beta and Air Monitoring Systems

Alpha/Beta Particulate Monitors

Air/Gas monitoring system

Low Background Alpha/Beta Counting System

TRIESTE, 22 May 2009

Monitoring Management Software

TRIESTE, 22 May 2009

Research & Development

NSG Project - New Scintillanting Glass (UNIMIB-EI.Se.-IEO-Starlite-Fraen-ODL)

Special System for Decommissioning

TRIESTE, 22 May 2009

Acknowledgements

ELETTRA, Trieste

TRIESTE, 22 May 2009