Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str. 15, 12489 Berlin, Germany

Accuracy of Dose Measurements at BESSYII and MLS

H. Glass, M. Martin, K. Ott, D. Schüler

Introduction

BESSY and MLS preview
Measurement system
Neutron spectra
Pulsed radiation
Summary

BESSY GmbH

In numbers (2008)

Founded 1979 1982- 1999 BESSY I in Berlin - Wilmersdorf since 1998 BESSY II in Berlin - Adlershof since 2000 Member of the Leibniz-Society 1.1.2009 Merger with Hahn-Meitner-Institut Berlin to Helmholtz-Zentrum Berlin Former BESSY: 230 Employees

(90 Scientists)

Helmholtz-Zentrum Berlin für Materialien und Energie

- Foundation: 1. Jan. 2009 Merger of BESSY with HMI (Hahn – Meitner – Institut, Berlin)
- 1100 employees
- Operates BESSYII , BERII (research reactor) and a cyclotron for eye-tumor therapy
- > 2500 users/a
- Scientific Program: Magnetic materials Functional materials Materials for solar technology Improvements of accelerators and reactor Eye-tumor therapy since 1998, 200 patients/a >90% successful, cooperation with Charité Berlin

Funding 90% by German State, 10 % by Berlin

Parameter und Beamlines

Electron energy (GeV) Circumference (m) Emittance (mrad) Straight sections ID's

Brilliance (Ph/mm²/mrad²/0.1%

Beamlines

htresting on driver Mikrotron

Undulator

Synchrotron

Il whole Decmy

Speicherring

0.9 – 1.9 240 6 x 10⁻⁹ 16 14 ca. 10¹⁹

49

In the experimental hall

in 2009

49 Beam lines in operation

PTB in Berlin-Adlershof: Metrology with synchrotron radiation

Photon Radiometry

Metrology Light Source (MLS)

- Start of construction: September 2004
- Start of commissioning: January 2007
- Start of user operation: 2008

Willy-Wien-Laboratory with Metrology Light Source (MLS)

MLS in the Willy-Wien-Laboratory

Photon Radiometry

Metrology Light Source

Microtron

100 MeV, <100 nA@10Hz, t_{acc} <1 µs Storage Ring MLS

Photon Radiometry

- 48 m circumference
- electron energy
 - 200 MeV to 600 MeV
- charact. photon energy
 12 eV to 314 eV
- beam current
 - 1 pA to 200 mA
- natural emittance (600 MeV)

100 nm rad

Measurement problems at synchrotron light sources

High energy parts of the spectrum (esp. neutrons)

 Pulsed radiation (300nsec @10Hz, BESSY) 150nsec @10 Hz MLS)

 Pulsed radiation at low rep. rate (esp. ionisation chambers, e.g. 30mHz Top-Up)

Radiation flashes (beam dumps with open beamshutters)

Measurement system

Gamma / Neutrons

Ionisation chamber BF3 Counter Electronic 16 positions in E-hall (shielding wall closest transversal distance to Storage ring)

Ionisation chambers

Dose rates: 10 nSv/h – 10 Sv/h (pulsed rad. 300 ns@10 Hz) E: 35 keV – 7 MeV 600 – 900 pulses / injection Current (fA) is measured between two synchronisation pulses by integration (U at condensor). Synchronisation times and C's range dependent. 7 Measurement ranges with synchronisation times (50, 5, 0.5,...,0.5) sec

Neutron counters

BF3, pressure 867 mbar, 96% B10
V = 56.1 ccm
0.025 eV - 10 MeV H(*10)
Max dose rate: 0.4 Sv/h
Cal. Factor 1.78 µSv/h /cps
Detection by ¹⁰B(n_{th},alpha)⁷Li

Neutron doses from semi-empirical formulas (90°, Cu and Fe(1), Cu(2))

 $Hr^{2} = 9.55 \cdot 10^{-16} \cdot E \cdot e^{-d \cdot \rho / \lambda_{g}} + \eta_{1} \cdot 4.0 \cdot 10^{-17} \cdot E \cdot e^{-d \cdot \rho / \lambda_{h}}$ Formula 1: Sv/primary electron K. Tesch Part.Acc.9 (1979), Rad. Prot. Dos. 22, 1 (1988)

 $\begin{aligned} Hr^{2} &= \eta_{2} \cdot 1.11 \cdot 10^{-15} \cdot E \cdot e^{-d \cdot \rho / \lambda_{g}} + 1.4 \cdot 10^{-17} \cdot E \cdot e^{-d \cdot \rho / \lambda_{h}} \\ \text{Formula 2: Sv/primary electron Landolt-Börnstein vol 11, Springer, Berlin (1990)} \\ Hr^{2} &= a_{1} \cdot 10^{-16} \cdot E \cdot e^{-d \cdot \rho / \lambda_{g}} + a_{2} \cdot 10^{-17} \cdot E^{1.1} \cdot e^{-d \cdot \rho / \lambda_{h}} \\ a_{1} &= 2.4 \cdot 10^{-17} \cdot A^{2/3} (0.33 + 0.67 \cdot \sin \theta) \\ a_{2} &= 2.3 \cdot 10^{-15} \cdot A^{-2/3} (0.07 + 0.93 \cdot e^{-\theta / 31^{0}}) \\ \lambda_{h} &= 91 + 53 \cdot e^{-\theta / 33^{0}} \end{aligned}$

Formula 3: Sv/primary electron H. Dinter et al NIM A 455 (2000)

FLUKA calculations of neutron spectra at thick Cu Target

- Hollow sphere
- Thick Cu Target
- Fluence to dose conv. ICRP74 H*(10)+Pell. data
- H>10/H<10
 = 2.72 (1m)
 = 3.65 (2m)

Thick Cu target, spherical geometry

d/m	H<10MeV	H>10MeV	H>10/H<10	
0	5.44E-05	2.34E-06	0.043	
1	2.52E-08	7.01E-08	2.787	
2	1.38E-09	5.05E-09	3.653	
d/m	H∑	H form.1	H form.2	H form.3
1	9.53E-08	3.13E-07	3.48E-07	9.06E-08
2	6.43E-09	1.57E-08	1.17E-08	5.42E-09

Table1: Results for thick Cu target at 90°, H in pSv/prim. e-

FLUKA Calculations of neutron spectra BESSY geometry

- Target: Undulator chamber Alumium, 1 mrad
- E = 1.9 GeV
- Injection
 3E+10 electrons/sec
- 100 % losses (crash)

Neutron Dose Rate in Sv/h

Neutron spectrum Al-target

 Real Al Target BESSY undulator chamber 1.7GeV
 Fluence to dose

conv. ICRP74

H>10/H<10 = 2.64</p>

 $H^{*}(10)$ +Pell. Data

Al target, undulator vac. chamber, angle=1 mrad, BESSY geometry

d/m	H<10MeV	H>10MeV	H>10/H<10	
0	4.55E-04	5.61E-05	0.123	
1	2.85E-07	7.53E-07	2.637	
d/m	H∑	H form.1	H form.2	H form.3
1	1.04E-06	4.98E-06	2.53E-06	1.40E-06

Table2: Results for thick AI target at 90°,H in pSv/prim. e-

FLUKA calculations of neutron spectra BESSY geometry sc.2

- Target: dipole chamber Fe, 1 rad. length
- E = 1.9 GeV
- Injection 3E+10 electrons/sec
- 100 % losses (crash)

Neutron Dose Rate in Sv/h

Neutron spectrum at PE sphere

Thin Fe target Opened BS Besides mirror chamber → H>10/H<10</p> =0.043

Neutron spectrum thin Fe target

- Thin Fe Target BESSY dipole chamber 1.9 GeV
- Fluence to dose conv. ICRP74 +Pell. Data, H*(10)

● H>10/H<10 = 2.66</p>

Thin Fe target, dipole vac. chamber, angle=5.6°, 2 cm, BESSY geometry

d/m	H<10MeV	H>10MeV	H>10/H<10	
0	5.94E-05	9.75E-06		
1	5.38E-08	1.43E-07		
d/m	H∑	H form.1	H form.2	H form.3
1	1.97E-07	2.82E-06	2.53E-06	8.89E-07

Table2: Results for thin Fe target at 90°,H in pSv/prim. e-

Neutron spectra from thin Fe target at storage ring tunnel roof

- Thin Fe target BESSY dipole chamber 1.9 GeV
 Fluence to dose conv. ICRP74 +Pell. data, H*(10)
- H>10/H<10 = 2.00 (OC)
 H>10/H<10 = 1.56 (HC)

Thin Fe target, dipole vac. chamber, angle=5.6°, 2 cm, sr. tunnel roof

d/m	H<10MeV	H>10MeV	H>10/H<10	
0	5.94E-05	9.75E-06	0.164	
0.7 OC 0.7 HC	2.02E-07 1.12E-07	4.05E-07 1.78E-07	2.006 1.582	
d/m	H∑	H form.1	H form.2	H form.3
0.7 OC 0.7 HC	6.07E-07 2.90E-07	6.54E-06 1.25E-06	6.57E-06 -	1.29E-06 -

Table2: Results for thin Fe target at 90°,H in pSv/prim. e-

Neutron shielding

Formula 3 agrees best with Fluka calculations, BUT no HC values given.
For thin targets formulas 1 and 2 should be used with a target efficiency factor of 0.1 for BOTH terms

 Heavy concrete reduces high energy neutrons better than ordanary concrete

Pulsed Radiation for Rad. Monitors

Not pulsed (continuous): radiation with time structure of RF systems at accelerators (e.g. 500 MHz, 3 GHz etc) Pulsed: f < 1/t_{dead} or f < 1/t_{pulsewidth} (e.g. 20 kHz for Studsvik neutron monitor) Pulsed: single shots (e.g. flash from beam dump, X-ray shooting in hospitals etc.)

Correction formulas for Pulsed Radiation (prop. counters)

 Continuous radiation $R_{true} = R_{meas} / (1 - R_{meas} * t_{dead})$ • Pulsed radiation $(t_{acc} < t_{dead})$ G. F. Knoll (1999): $R_{true} = -f^* \ln(1 - R_{meas}/f)$ Taylor series 1. order $R_{true} = R_{meas} / (1 - R_{meas} / f)$ Only 1 event / acc. pulse can be counted Not dependent of acc. pulse width t_{acc} Not dependent of detector dead time t_{dead}

Correction formulas 2 (prop. counters)

 Neutrons are stored in the moderator t_{neu} > t_{acc}

 Pulsed radiation (t_{dead} < t_{neu}) R_{true} = R_{meas} /(1 - R_{meas} * t_{dead} / (f * t_{neu})) Dose rate loss from R_{meas} / R_{true} = 1 - R_{meas} * t_{dead} / (f * t_{neu})

BF3 A-B counter Studsvik dead time effects pulsed rad.

PDrl = c*dH_{meas}/dt * t_{dead} / (f * t_{neu})*100%
 c = 3.3 cps/(mrem/h)
 Curves with t_{dead}=0.5 µs and t_{neu}= 50 µs

BUT:

 Max dose rate 10000 mrem/h
 Max rate =33000 cps
 t_{dead} = 30.3 µs
 Max dose rate @10 Hz (PDrl =20%) 1 mrem/h = 10 µSv/h

BF3 A-B counter Thermo (Biorem) dead time effects pulsed rad.

400000 µSv/h Max dose rate: 1.78 (µSv/h)/cps -C =224719 cps Max rate = 4.45 µs י ל_{dead} = 50 µs ?? ∙t_{neu} = • PDrl = $(dH_{meas}/dt)/c^* t_{dead} / (f^* t_{neu})^* 100\%$ Max dose rate @10 Hz (PDrl =20%) = 40 µSv/h ??

MLS Microtron

- 100 MeV
- 10 mA in Pulse (10 Hz)
- 1 µs P.width
- 100 nA DC
- Gun 80 kV
- 300 mA in Gun pulse (10 Hz)
- 5 µs Gun P. width
 15 µA DC

Fluka Simulation of Experiment Gamma Rad.

- 100 MeV /15 nA
- 10 Hz
- Closed FOM (Al target 2 cm)
- 1 m distance Biorem to FOM
- H*(10)
- Detailed magnet yoke
- Dose rate at Ichamber (left) <32 mSv/h

Fluka Simulation of Experiment Neutron Rad.

- 100 MeV /15 nA
- 10 Hz
- Closed FOM (Al target 2 cm)
- 1 m distance Biorem to FOM
- H*(10)
- Detailed magnet yoke
- Neutron detector 30 cm PE ball (right)
- Dose rate < 10 mSv/h

Neutron measurements@MLS

- Gamma measurements linear up to 74 mSv/h (10 Hz)
 Circles: 2nd series, change in Ichamber pos. to reduce gamma-rad
- Neutron measurements linear up to 250 µSv/h (10 Hz) = 6.9 nSv/acc.
 pulse Not dependent from t_{acc}
- At 532 µSv/h true dose rate already 9.14 mSv/h Current <15 nA
- Not dependent from f and pulse width just dose/acc pulse t_{neu} must be > 50 µs

Neutron spectrum @ detector

- 100 MeV
- 1 m distance to FOM
- 30 cm PE sphere
- No counting losses due to high energy neutrons (>10 MeV)

Neutron spectrum out of yoke

100 MeV

- 1.4 m distance to Neutr. detector
- No counting losses due to high energy neutrons
- 1 MeV to thermal 3 orders of magnitude

Time of flight from yoke to detector

- 1.4 m distance to detector
- Yoke is main neutron source
- 99 % of the neutrons are in the moderator within 1 t_{dead}

Neutron spectrum out of wall

- Circular area 80° -100° rel detector
- 1.6 m distance to neutron detector
- 30 cm PE sphere
 1 MeV to thermal only one order of magnitude

Time of Flight from Wall to Detector

- 100 MeV
- 1.6 m distance to FOM
- 30 cm PE sphere
- No counting losses due to high energy neutrons (>10 MeV)
- Neutrons of wall reach detector up to msec after acc. Pulse
- Fluence out of wall is about 2 orders of magnitude lower than fluence from yoke

Delay inside the moderator Dinter, Tesch

- Moderation from 1 MeV to 1 eV in 1 µs, to thermal Energies 5 µs
- 1/10 val time ~ Volume of moderator
- AB counter 1/10 val time1 180 µs 1/10 val time2 224 µs
 Usage for Poisson distribution

Delay inside the moderator Dinter, Tesch

Moderation from 1 MeV to 1 eV in 1 µs, to thermal Energies 5 µs Poisson Calculation AB Cnt. Dp=10 nSv, 1µrem,n=200 t_{dead} 4 µs C=86 % t_{dead} 30 µs C=44 % Poisson Calculation Biorem Dp=6.9 nSv, n=200 t_{dead} 4.45 µs C=84 %

Correction formula Biorem

 $\frac{dH_{meas}}{dt} = 1 - cal * dH_{meas} / dt * t_{dead} / (f * t_{neu})$

with $t_{neu} = 356\mu s$, cal=1 cps /1.78(μ Sv/h), $t_{dead} = 4.45\mu s$

Neutron dose by beamdump

- Target: iron 2cm (dipole chamber half deflection angle)
- E = 1.9 GeV
- Storage ring filling 1E+12 electrons
- About 32 μSv/dump 100 μSv/a (50/16)
- For 32 µSv/dump
 C=0.27% ->86 nSv/dump
 measured

Summary Neutron spectra

- Calibration factors for undetected high energy neutrons derived
- At d = 1 m we get H10+/H10- 2.65 as mean value. Calibration factor: 3.65
- At d = 0.7 (roof and inner side wall) we get H10+/10- 2.00 (OC) and 1.55 (HC). Calibration factors: 3.00 and 2.55
- Agreement is best with semi-emipirical formula 3 (Dinter, Leuschner et al 2000) with thick targets and OC. (No HC parameters given)
- Semi-empirical formulas for neutrons of Tesch and Landolt-Börnstein should be corrected by the factor of 0.1 (BOTH terms) if the target is thin (< one radiation length)
- Annual dose limit <1 mSv in the accessible part of the experimental hall is still hold
- Usage of calibration factors accepted by our state authority (LAGetSi) = Landesamt f
 ür Arbeitsschutz, Gesundheitsschutz and technische Sicherheit

Summary Pulsed Radiation

- 6.9 nSv/acc. pulse limit for Biorem, correction formula derived. I-chamber linear up to 74 mSv/h (@10 Hz), no error due to gamma radiation
- At BESSY neutron dose rates > 250 µSv/h (@10 Hz) outside the shielding wall are only possible at crash operation during injection and >90% electron losses close to the detector.
- Error of annual dose < 10% for BESSY, no error for MLS.
- Shielding BESSY 1 m OC, 1 m HC ratchet end wall. At thin walled SR light sources error for annual dose can be considerable due to undetected neutron dose rates at injections.

Helmholtz-Zentrum Berlin, BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany

