Experiences from First Top-Off Injection At The Stanford Synchrotron Radiation Lightsource

Johannes Bauer, James Liu, Alyssa Prinz, Sayed Rokni

Radiation Protection Department SLAC National Accelerator Laboratory Menlo Park, CA 94025, U.S.A.

> RADSYNCH'09 Trieste, Italy May 22, 2009

Overview

- Introduction to SSRL
- Introduction to "Top-Off"
- Studies in Preparation for Top-Off
- Safety System
- First Tests
- SSRL Improvements
- New Tests
- Conclusions and Path Forward

Introduction to SSRL

"Stanford Synchrotron Radiation Lightsource"

- Evolved from high-energy physics synchrotron "SPEAR"
- Twice upgraded, now:
 - Storage ring SPEAR3
 - Fed by 10 Hz Linac (to 150 MeV), Booster (to 3 GeV)
 - Connected with BTS line (Booster-To-SPEAR)
- 3 GeV, 100 mA with typically 1 W injection usually three times a day fill from ~85 mA to 100 mA
- Going to 500 mA this year, later up to 5 W injection
- Currently 13 beamlines with 27 stations

Introduction to SSRL (cont.)

Introduction to SSRL (cont.)

Top-off, Top-Up, etc.

So far: Injection stoppers (IS) closed while filling storage ring

- → no worries about electrons and Bremsstrahlung reaching BL during injection
- → but temperature changes (→alignment) affect optical components:
 o.k. now, but not desired at higher currents

Top-Off: Filling storage ring while injection stoppers open

- "Infrequent injection": 3+ times a day impractical unless IS stay open
- "Trickle injection": up to once every minute injector stays on, must stay tuned, high instantaneous charge

At other facilities "top-off" called "top-up"

Top-off, Top-Up, etc. (cont.)

Q = 5 A hr: Higher beam currents \rightarrow shorter lifetime \rightarrow higher losses

Beam chamber apertures and magnets constrain where beam can go

Studies by SSRL (with LBNL) to answer:

- How far towards beamline can injected beam travel with which magnet settings?
- Which magnet settings prevent beam from going past safe endpoints?

Safety Systems designed to keep beam within safe endpoints

SSRL Ray Trace Studies (cont.)

Radiological Considerations

(1) Long-term dose from normal operation:

Additional radiation from:

- forward-angle Bremsstrahlung from injected beam at apertures
- higher beam currents

Based on estimated loss rates: within 1 mSv (100 mrem) per 1000 hr limit

(2) Radiation dose due to mis-steered beam

Within bounds of safety systems,

but such serious mis-steering expected only very rarely Safety system defines "safety endpoint" that electrons cannot pass Simulations → up to 22 mSv/h (2.2 rem/h at 5 W) for dipole lines, ~20% less for ID lines – always radiation monitors in place

(3) Radiation due mis-steering with full safety system failure Should never happen; VERY UNLIKELY; requires several serious failures Simulations → dose rate high, up to 3.3 Sv/h (330 rem/h) at 5 W for dipole lines, up to 0.13 Sv/h (13 rem/h) for ID lines but per event (<1 s) 0.74 mSv (74 mrem) with radiation monitors in place

Top-Off Safety Systems

Beam Containment System (BCS):

- Stored Current Interlock: top-off only for >50 mA
- Apertures: may not be modified without approval
- Magnet Power Supply Interlocks: monitoring both current and voltage
- Clearing Magnets: along dipole beamlines (no space for permanent magnets)
- Dose Rate Interlock: radiation monitors tripping at 0.02 mSv/h (2 mrem/h)

Non-BCS Systems:

- Daily Dose Interlock: rad. monitors allow max. 0.01 mSv (1 mrem) per day
- Charge Loss Interlock: allow only certain # e- lost each day
- Additional: Machine protection interlocks and software warnings (tight limits)

First Tests

- April to July 2008
- Interlocked BSOICs next to hutch
- Floor cleared, most data read out remotely:
 - Beam Shut-Off Ion Chambers (BSOIC) SLAC-built
 - Beamline Radiation Monitors HPI 6030/6012
- Access restricted:
 - No access during tuning
 - Electronic "chirping" dosimeters
 - Handheld dose meters

Beam Conditions for Tests

• High-efficiency injection

(1 W injection, ~60-80% injection efficiency)

Low-efficiency injection due to BTS mis-tuning

(1 W, ~30-50% injection efficiency) Losses inside SPEAR ring at apertures

• Zero-efficiency injection

similar results

(1 W, 0% injection efficiency) All of injected beam <u>lost in ring</u> due to "bump" at beamline (orbit moved towards edge of aperture)

Measurements with Old Injection

Measurements with Old Inj. (cont.)

Three "types" of beamlines were found:

 BL 4, 5: Extra radiation seen during both high-efficiency injection, up to 18.5 microSv/h (1.85 mrem/h) and low-efficiency injection, up to 30 microSv/h (3 mrem/h)

2. BL 10, 11:

No extra radiation seen during high-efficiency injection, but during low-efficiency injection, up to 16 microSv/h (1.6 mrem/h)

3. BL 1, 2, 6, 7, 9:

No or very little, < 1 microSv/h (< 0.1 mrem/h), extra radiation seen during high- or low-efficiency injection

BL 8, 12, 13, 14: Ray trace studies not yet approved; BLs not tested

Dose Extrapolations - Old Injection

Extrapolations based on measurements & operation scenarios

 No issues for any BL at 100 mA top-off operation

DI	100 mA Infrequent Total dose							
DL	microSv/1000h	mrem/1000h						
BL 1	0	0						
BL 2	4	0.4						
BL 4	110	11						
BL 5	190	19						
BL 6	14	1.4						
BL 7	10	1						
BL 8	Ray trace study not yet	Ray trace study not yet approved, BL not tested						
BL 9	3	0.3						
BL 10	80	8						
BL 11	80	8						
BL 12	Ray trace study not yet approved, BL not tested							
BL 13	Ray trace study not yet approved, BL not tested							

Dose Components

Radiation from stored beam (s), injected beam (i), traveling through wall (w), through beam pipe (b)

Dose Extrapolations - Old Injection

Dose components at 500 mA trickle injection

 D_{ib} high for BL 4, 5, 10 D_{sb} high for BL 4, 5, 11

lower with — new injection

Stored beam dose measured with GM/BF_3 detector

Requires additional shielding for higher _ currents

		Dose components at 500 mA trickle injection in mSv/1000h and mrem/1000h												
BL		D _{ib}		D _{iw}			D _{sb}			Ds	w	Total		
BL 1		0	4	0	0			0	0	0.01		1	0.01	1
BL 2	2	0	0	0		0		0	0	C).1	10	0.10	10
BL 4	+/	0.93	93	0.0	2	2		1.32	132	0.06		6	2.33	233
BL 5		2.34	234	0,1/	4	14		1.07	107	þ	.06	6	3.62	362
BL (5	0.05	5	0.0	5	5		0.18	18	0	02	2	0.30	30
BL	7	0.05	5	0		С		0	0	0	18	18	0.23	23
BL 8	}	Ray trace study not yet approved, BL not tested												
BL 9		0	0	0		0		0.08	8		0	0	0.08	8
BL 1	0	0.94	94	0.0	1	1		0.32	32		0	0	1.27	127
BL 1	1	0.15	15	9.0	4	4		1.66	166	0	.08	8	1.93	193
BL 1	2	Ray trace study not yet approved, BL not tested												
BL 1	3	Ray trace study not yet approved, BL not tested												

SSRL Improvements to Injection

Injection system was adequate up to now; top-off raised the bar, and SSRL responded

- Studied changes in x, y, x', y', energy, timing, optics of injected beam
- New diagnostics added
- Better control of trajectory and optics (computer monitoring, frequent checks)
- Removal of windows in BTS line: Now one vacuum system from Linac to SPEAR

SSRL Improvements to Injection (cont.)

oldAPoldwin

- Simulations show big improvement very clear in y and y' distributions of injected beam injection efficiency 83% → 99% in simulation
- Similar simulation for optics
- Measured radiation doses went down

NAL ACCELERATOR LABORATOR

oldAPoldwin

injected

Thanks to J.Safranek, X.Huang, SSRL

J.M.Bauer, "SSRL Top-Off Experiences" RADSYNCH'09, May 22 2009, Page 20

5

Measurements with New Injection

- Repeat with improved injected beam (fall 2008)
- Measurements during high-efficiency injection

The fourBL 4:1.2 microSv/h0.12 mrem/hworst BLsBL 5:1.6 microSv/h0.16 mrem/hbefore!BL 10,11:0 microSv/h0 mrem/h

Dose rates about 10 times lower than before!

Worst 1.6 microSv/h (0.16 mrem/h) extrapolated to 1000 hour/year:

D_{ib} = 5 microSv 56 microSv 92 microSv (0.5 mrem) for 100 mA infrequent injection (5.6 mrem) for 500 mA infrequent injection (9.2 mrem) for 500 mA trickle injection (was 2.34 mSv or 234 mrem before)

Dose Extrapolations - New Injection

Dose components at 500 mA trickle injection

D_{ib} now low!

No effects on D_{sb} (to be improved by shielding; reduction to 1/10 for higher current operation)

	Dose components at 500 mA trickle injection in mSv/1000h and mrem/1000h										
BL	D _{ib}		D _{iw}		D	sb	Ds	W	Total		
BL 1											
BL 2											
BL 4	0.07	7	0.02	2	1.32	132	0.06	6	1.47	147	
BL 5	0.09	9	0.14	14	1.07	107	0.06	6	1.36	136	
BL 6											
BL 7											
BL 8	Ray trace study not yet approved, BL not tested										
BL 9											
BL 10	0	0	0.01	1	0.32	32	0	0	0.33	33	
BL 11	0	0	0.04	4	1.66	166	0.08	8	1.78	178	
BL 12	Ray trace study not yet approved, BL not tested										
BL 13	Ray trace study not yet approved, BL not tested										

Measurements with New Inj. (cont.)

- Injection with low efficiency
 - BL4: 1.2 microSv/h 0.12 mrem/h
 - BL5: 4.8 microSv/h 0.48 mrem/h
 - BL10: 0.9 microSv/h 0.09 mrem/h
 - BL11: 0.6 microSv/h 0.06 mrem/h

Again lower dose rates than before

Worst 4.8 microSv/h extrapolated to 1000 hour/year $D_{ib} = 2.8 \text{ mSv} (280 \text{ mrem}) \text{ at 500 mA trickle injection}$ (50 min to reach 100 mA)

Summary of Test & Path Forward

- Tests taught us:
 - Improved injection well enough even for 500 mA trickle injection
 - No long-term dose rate concerns for 100 mA (June 2009)
- More beamlines will be added over time
- For top-off up to 200 mA
 - Warning system for injection beam lattice and optics
 - Daily Dose Interlock
 - Charge Loss Interlock
- For > 200 mA (stored beam issue) (Fall 2009)
 - Additional shielding for BL4, 5 and 11
 - Mitigation systems for BL thermal damage issues
- Review for trickle charge injection (beyond 2009) & injector upgrade (>1.5 W)

J.M.Bauer, "SSRL Top-Off Experiences" RADSYNCH'09, May 22 2009, Page 24

(July 2009)

Conclusions

- Tests very interesting: higher dose rates measured than expected
- SSRL was able to improve injection system
- With improvements top-off o.k. even for 500 mA trickle injection
- Stored-current dose needs to be addressed for >200 mA
- Top-off will start soon, later going to higher currents

