

Vertical emittance reduction via coupling resonance driving terms correction: theory and experimental results at the ESRF

J. Chavanne, F. Ewald, L. Farvacque, A. Franchi, B. Nash, T. Perron, K. Scheidt

XVIIIth European Synchrotron Radiation Light Source Workshop 2010 ELETTRA, Trieste, 25-26 November 2010

European Synchrotron Radiation Facility

Outlines

- Vertical emittances in presence of coupling
- Coupling correction via Resonance Driving Terms
- Application to the ESRF storage ring
- Preserving small vertical emittance during beam delivery
- Towards ultra-small vertical emittance

Eigen-emittance:

$$\mathscr{E}_{u} = \frac{1}{2} \frac{\oint \{\mathcal{H}_{x}^{2}(s) \mathrm{d}(s)\} ds}{\oint \{\mathrm{b}_{RF}(s) - D_{x}(s) \mathrm{b}_{\delta x}(s)\} ds} \left| \begin{array}{c} \mathscr{E}_{v} = \frac{1}{2} \frac{\oint \{\mathcal{H}_{y}^{2}(s) \mathrm{d}(s)\} ds}{\oint \{\mathrm{b}_{RF}(s) - D_{y}(s) \mathrm{b}_{\delta y}(s)\} ds} \right|$$

RMS emittance:
$$\epsilon_r$$

$$= \sqrt{\sigma_r(s)\sigma_p(s) - \sigma_{rp}^2(s)}$$

Measurable emittance:

$$\mathbb{E}_r = \frac{\sigma_r^2(s)}{\beta_r(s)} = \frac{\langle r^2(s) \rangle - (\delta D_r(s))^2}{\beta_r(s)}$$

The three definitions are equivalent and

 $E_y = \mathcal{E}_v = \mathcal{E}_y = \operatorname{const.}$ If vert. disp. $D_y = 0$, $E_y = \mathcal{E}_v = \mathcal{E}_y = 0$

Constant eigen-emittance [See B. Nash et al. PRSTAB 9, 032801, 2006]:

$$\mathscr{E}_{v} = \frac{1}{2} \frac{\oint \mathrm{d}(s) \left\{ \mathcal{C}^{2} \mathcal{H}_{y}^{2}(s) + \left[\mathcal{S}_{-}^{2} + \mathcal{S}_{+}^{2} \right] \mathcal{H}_{x}^{2}(s) \right\} ds}{\oint \left\{ \mathrm{b}_{\scriptscriptstyle RF}(s) - \mathcal{C}^{2} D_{y}(s) \mathrm{b}_{\delta y}(s) - \left[\mathcal{S}_{-}^{2} - \mathcal{S}_{+}^{2} \right] D_{x}(s) \mathrm{b}_{\delta x}(s) \right\} ds}$$

RMS projected *s*-dependent emittance:

$$\epsilon_y = \sqrt{\sigma_y \sigma_p - \sigma_{yp}^2} = \sqrt{\left(\mathcal{C}^2 \mathscr{E}_v + \left[\mathcal{S}_-^2 + \mathcal{S}_+^2\right] \mathscr{E}_u\right)^2 - \left(2\mathcal{S}_+ \mathcal{S}_- \mathscr{E}_u\right)^2}$$

Measurable apparent *s*-dependent emittance:

$$\mathbb{E}_{y} = \frac{\sigma_{y}^{2}}{\beta_{y}} = \mathcal{C}^{2} \mathscr{E}_{v} + \left[\mathcal{S}_{-}^{2} + \mathcal{S}_{+}^{2} - 2\mathcal{S}_{-}\mathcal{S}_{+}\cos\left(q_{+} - q_{-}\right)\right] \mathscr{E}_{u}$$

In absence of coupling C=1, S₋=S₊=0 and E_y= \mathcal{E}_{v} = \mathcal{E}_{v} =const

•Coupling sources (tilted quads, misaligned sextupoles, ID error fields, etc.) generate skew quad fields $J_1(s)$

J₁(s) generate two
Resonance Driving
Terms (RDTs) f(s)

 $f_a = M_{ab}(\beta, \phi) J_{b,1}$

Linear dependence!!

$$\begin{aligned} \mathcal{C} &= \cosh(2\mathcal{P}) ,\\ \mathcal{S}_{-} &= \frac{\sinh(2\mathcal{P})}{\mathcal{P}} |f_{1001}| ,\\ \mathcal{S}_{+} &= \frac{\sinh(2\mathcal{P})}{\mathcal{P}} |f_{1010}| ,\\ \mathcal{P} &= \sqrt{-|f_{1001}|^2 + |f_{1010}|^2} ,\\ \mathcal{P} &= \sqrt{-|f_{1001}|^2 + |f_{1010}|^2} ,\\ f_{\frac{1001}{1010}} &= \frac{\frac{\sum_{w}^{W} J_{w,1} \sqrt{\beta_x^w \beta_y^w} e^{i(\Delta \phi_{w,x} \mp \Delta \phi_{w,y})}}{4(1 - e^{2\pi i (Q_u \mp Q_v)})}\\ q_{-} &= \arg\{f_{1001}\} , \qquad q_{+} = \arg\{f_{1010}\} \end{aligned}$$

Coupling correction via Resonance Driving Terms

The lower the vertical dispersion and the coupling RDTs, the smaller the vertical emittances

- Vertical dispersion Dy is linear in the skew quad strengths J_1 : once measured may be corrected via SVD of its response matrix
- Coupling RDTs are linear in J_1 too, and a response matrix may be easily defined and used for correction (fast, direct, no iteration needed)

Procedure [already independently developed by R. Tomas (for ALBA)]:

1. Define an error lattice model (quad tilts, etc. from ORM or TbT BPM data) => RDTs and Dy \vec{F}

- 2. Evaluate response matrix of the available skew correctors M
- 3. Find via SVD a corrector setting $\mathbf{\vec{J}}$ that minimizes both RDTs and Dy

$\vec{J} = -\vec{M} \vec{F}$ to be pseudo-inverted

First RDT correction: January 16th 2010

All skew correctors OFF: $\overline{\xi}_{v} \pm \delta \xi_{v} = 237 \pm 122 \text{ pm}$

First RDT correction: January 16th 2010

1st ORM measur. and RDT correction: $\overline{\xi}_v \pm \delta \xi_v = 23.6 \pm 6.3 \text{ pm}$

First RDT correction: January 16th 2010

2nd ORM measur. and RDT correction: $\overline{\epsilon}_v \pm \delta \epsilon_v = 11.5 \pm 4.3 \text{ pm}$

ESRF record-low vertical emittance: June 22nd 2010 At ID gaps open: $\overline{\epsilon}_v \pm \delta \epsilon_v = 4.4 \pm 0.7 \text{ pm}$

 Low coupling may not be preserved during beam delivery
because of continuous
changes of ID
gaps that vary
coupling along
the ring

Apparent emittance measured at 14 monitors on Jan. 20th 2010, during beam delivery and movements of two ID gaps movements

European Synchrotron Radiation Facility

•H-V steerers at the ends of an ID straight section were cabled so to provide skew quad fields

•Look-up tables (corrector currents Vs ID gap aperture) were defined so to preserve the vertical emittance at any gap value.

•Look-up tables (corrector currents Vs ID gap aperture) were defined so to preserve the vertical emittance at any gap value.

•Look-up tables (corrector currents Vs ID gap aperture) were defined so to preserve the vertical emittance at any gap value.

•Coupling may be represented by two complex vectors (for the sum and difference resonances respectively) $C\pm=|A\pm|e^{i\phi\pm}$.

•At the ESRF storage ring, on top of the RDT static correction, C± may be dynamically varied so to catch up coupling variations induced by ID gap movements.

• A new software minimizes automatically C± by looking at the average vertical emittance

Qui	it HEL	Р	NuX +	NuZ =	50		Hard Copy	Panel		
ľ N	Quit	HELP	NuX	– NuZ	= 23		Ha	ard Par	nel	
QP QP	[Name	e		Set		Read	Sta	tus	-	ယ
QP QP	QP-S1	3/C1		-0.4683	A -	-0.4683	A On			N
QP QP	QP-S4 QP-S4	1/C2 1/C2 1/C10		-0.1365	A A - A	-0.1366	A On A On	- 1		2
QP QP	QP-S4 QP-S1	l/C1 .3/C20		0.1084 -0.1677	A A -	0.1082 -0.1677	A On A On			Ĕ
QP QP	QP-S4	1/C18 1/C26		0.0716	А А - л	0.0717	A On A On A On	- 1		ด
QP QP OP	QP-S4 QP-S4	1/C6 1/C21		0.1092	A A A	0.1091	A On A On	- 1		C
QP QP	QP-S4 QP-S1	1/c22 .3/c4		0.0331 -0.0151	A A -	0.0330	A On A On	- 1	-	Q
QP QP	QP-S1 QP-S1 OP-S1	3/C12 3/C24 3/C30		0.1139 0.0536 -0.1862	A A A -	0.1155	A On A On A On	- L		S
QP QP QP	QP-S2 QP-S2	20/c5 20/c7		0.0507 0.1407	A A	0.0511 0.1407	A On A On	1		► <u>v</u>
QP QP	QP-S2 QP-S2	20/C9 20/C11 20/C13		-0.2468 -0.1365	A - A -	-0.2469 -0.1331	A On A On A On	- 1		Ô
QP QP OP	QP-S2 QP-S2	20/C15 20/C17		0.0149	A A	0.0159	A On A On	- 1		≶
QP QP	QP-S2 QP-S2	20/C19 20/C21		0.2667	A A	0.2688	A On A On	- 1		_
	QP-S2 QP-S2 QP-S2	20/C23 20/C25 20/C27		-0.2234 0.1086 -0.2560	A - A -	0.1088	A On A On A On	_		5
QP	QP-S2 QP-S2	20/c29 20/c31		-0.1649	A -	-0.1628 0.1582	A On A On	- 1		d
1	QP-S2 QP-S2	20/01		0.2111	A A	0.2116	A On	Z		S
		An	nplitude	-	_	Pha	se			
	0	SR/AM	/IPL-18/P22) s	R/PHASE	-18/P22			
R.	Set	Value	0.0738	A S	et Value	14	7.6 de	3		
On	Read	Vanue	0.0735	A Rea	ad Value	14	5.9	3		
	On	Reset	148 					0	ff	

Towards ultra-small vertical emittance

At the ESRF SR corrector coils (dipole, quad, skew quad & sextupole) are installed on the yokes of the main sextupoles (7 per 32 cell).

52 coils may be powered so to have more than 32 corrector skew quads.

Towards ultra-small vertical emittance

Conclusion

- The Resonance Driving Terms formalism helps clarifying the various significances of "vertical emittance" in presence of coupling and allows a straightforward, linear, correction algorithm.
- Applications to the ESRF storage ring led to vertical emittance of ε_y = 4.4 ± 0.7 pm, a record low for this machine (ε_x =4.2 nm => ε_y/ε_x≈ 0.1%).
- A number of procedures to preserve small vertical emittance during beam delivery was successfully tested: stable $\varepsilon_y = 6-7$ pm (7/8 +1 filling) delivered as of November '10
- 32 new skew quads will be added during 2011 with the aim of delivering beam of $\varepsilon_v = 2$ pm.

More details in a paper submitted to PRSTAB

Extra: vertical emittance Vs lifetime (7/8+1 filling)

EXTRA: Brilliance @ $\varepsilon_v = 5 \text{ pm}@200 \text{ mA} (2 \text{ pm}@300 \text{ mA})$

Solid curve: Brilliance of the X-ray beam emitted from the two in-vacuum undulators installed on ID27 (High Pressure beamline). Each undulator segment has a period of 23 mm, a length of 2 m and is operated with a minimum gap of 6 mm.

EXTRA: comparing RDT formula and optics codes

 ESRF lattice with three sources of coupling only (black dashed lines): apparent and projected emittances along the ring, from **RDT** formulas and AT (Ohmi's formalism)

Agreement < 0.1%

EXTRA: comparing RDT formula and optics codes

 ESRF lattice (top) and lattice with quadrupole fields in bending magnets (bottom): comparing vertical eigenemittance between RDT formula and MADX (Chao's formalism)

Agreement < 1% (top), ~5% (bottom)

EXTRA: comparing RDT formula and optics codes

EXTRA: Vertical apparent emittance "spread"

Measurement of Jan. 16th 2010, before correction

•The larger the coupling, the larger is the "<u>spread</u>" among the measured apparent vertical emittance along the ring (don't blame "bad" emittance monitors for larger-thanexpected measured values)

EXTRA: Vertical apparent emittance "spread"

•The larger the coupling, the larger is the "<u>spread</u>" among the measured apparent vertical emittance along the ring (don't blame "bad" emittance monitors for larger-thanexpected measured values)

EXTRA: Vertical apparent emittance "spread"

Apparent emittance measured at 14 monitors on Jan. 20th 2010, during beam delivery and movements of two ID gaps movements

•The larger the coupling, the larger is the "<u>spread</u>" among the measured apparent vertical emittance along the ring (don't blame "bad" emittance monitors for larger-thanexpected measured values)

European Synchrotron Radiation Facility

EXTRA: vertical emittance monitors in the ESRF SR

EXTRA: ESRF SR correctors matrix

At the ESRF SR corrector coils (dipole, quad, skew quad & sextupole) are installed on the yokes of the main sextupoles (7 per 32 cell).

52 coils may be powered so to have more than 32 corrector skew quads.

cell\sext.	S04	S06	S13	S19	S20	S22	S24	
4	norm. quad	steeerer	skew quad	steeerer	norm. quad	steeerer		
5	skew quad	steeerer		steeerer	skew quad	steeerer	norm. quad	
6	skew quad	steeerer	norm. quad	steeerer		steeerer		
7		steeerer		steeerer	skew quad	steeerer	norm. quad	96 steeerers
8		steeerer	norm. quad	steeerer	norm. sext	steeerer	norm. sext	
9		steeerer	norm. quad	steeerer	skew quad	steeerer	norm. sext	32 norm. quads
10	skew quad	steeerer		steeerer		steeerer	norm. quad	
11		steeerer	norm. quad	steeerer	skew quad	steeerer		32 skew quads
12		steeerer	skew quad	steeerer	norm. quad	steeerer		
13		steeerer	norm. quad	steeerer	skew quad	steeerer		12 norm. sext.s
14	norm. quad	steeerer		steeerer		steeerer	norm. quad	
15		steeerer	norm. quad	steeerer	skew quad	steeerer		
16		steeerer		steeerer	norm. sext	steeerer	norm. sext	Free channels:
17		steeerer	norm. quad	steeerer	skew quad	steeerer		52
18	skew quad	steeerer		steeerer		steeerer	norm. quad	
19		steeerer	norm. quad	steeerer	skew quad	steeerer		
20	skew quad	steeerer	skew quad	steeerer	norm. quad	steeerer		
21	skew quad	steeerer	norm. quad	steeerer	skew quad	steeerer		
22	skew quad	steeerer	norm. quad	steeerer		steeerer		
23	norm. quad	steeerer		steeerer	skew quad	steeerer	norm. sext	
24		steeerer	skew quad	steeerer	norm. sext	steeerer	norm. sext	
25		steeerer	norm. quad	steeerer	skew quad	steeerer		
26	skew quad	steeerer		steeerer		steeerer	norm. quad	
27		steeerer	norm. quad	steeerer	skew quad	steeerer		
28	norm. quad	steeerer		steeerer		steeerer	norm. quad	
29		steeerer	norm. quad	steeerer	skew quad	steeerer	norm. sext	
30		steeerer	skew quad	steeerer	norm. quad	steeerer		
31		steeerer	norm. quad	steeerer	skew quad	steeerer		
32		steeerer	norm. quad	steeerer	norm. sext	steeerer	norm. sext	
1	skew quad	steeerer	skew quad	steeerer	skew quad	steeerer		
2	skew quad	steeerer		steeerer		steeerer	norm. quad	
3		steeerer	norm, quad	steeerer	skew quad	steeerer	norm. sext	