



## **BESSYII and BERLinPro**

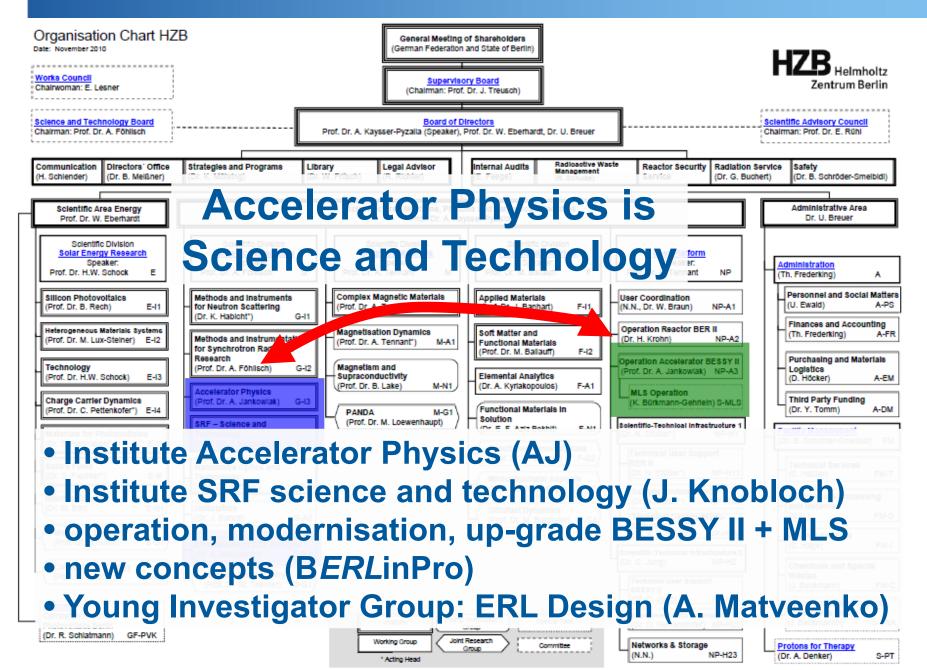
Andreas Jankowiak Institute of Accelerator Physics and Department for Accelerator Operation






## • Helmholtz-Zentrum Berlin and BESSY

## Status of BESSYII accelerator projects


- fast orbit feedback
- new injector linac
- top-up operation
- femto-slicing
- BERLinPro
  - compact ERL project is funded
- BESSY II perspectives

Helmholtz-Zentrum Berlin: Science with photons + neutrons

### HZB: Member of the Helmholtz Association like DESY, KIT/ANKA, GSI

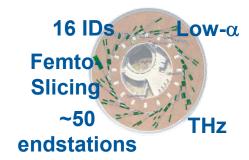


### Helmholtz-Zentrum Berlin: The new structure



## **BESSY II** Operation

### Beamtime Schedule in 2009:


- Standard Mode: Hybrid, Decaying Beam, fs-Slicing on Demand
  - fs-Slicing OFF: 300x 0.96mA + 1x 10mA, 0 mrad Bump
  - fs-Slicing ON : 297x 0.94mA + 3+1x 5mA, 0.6 mrad Bump
- Every Monday: LHe Refill, Maintenance, Commissioning
- Single Bunch:
  - •2x 2weeks 20mA
- Low Alpha: 4x 3 days, 2 shifts a 12h
  - "THz mode": 15mA, 1.75kHz (non-bursting)
  - "Short Pulses": 40mA, 1.7kHz or lower
- Machine Development / Beamline Comm.: 9 weeks
- Shutdown: 2 x 3weeks plus 3 days

Last 12 month: 4290h hybrid, 742h single, 584h low- $\alpha$ , 1040 commissioning

### **Change of Operation Concept:**

- BESSYII control room service since 1998:
  - pool of nearly all technicians, engineers and scientists of machine group
- Present Plan and Modification:
  - dedicated operations group (for BESSY and MLS)
  - ~50% machine operation / ~50% special skills (12 persons)
- Status:

• 7 persons hired. Well trained at the MLS, BESSY needs to measure up.



| Shift          | Mon                           | Tue                                                                | Wed | Thu                          | Fri | Sat               | Sun                                                                                             |
|----------------|-------------------------------|--------------------------------------------------------------------|-----|------------------------------|-----|-------------------|-------------------------------------------------------------------------------------------------|
| Early<br>7-15h | Machine<br>Servicing          |                                                                    |     |                              |     |                   | Main User<br>PTB<br>except where<br>denoted with<br>an asterisk in<br>the operation<br>schedule |
| Late<br>15-23h | ID/BL<br>Commis-<br>sioning   |                                                                    |     |                              |     |                   |                                                                                                 |
| Night<br>23-7h | Machine<br>Commis-<br>sioning |                                                                    |     |                              |     |                   | Machine<br>Commis-<br>sioning                                                                   |
| User operation |                               | Parasitic use possible<br>(in general, special beam<br>conditions) |     | See TV Monitor<br>for status |     | No user operation |                                                                                                 |

**BESSY User Shift Schedule** 

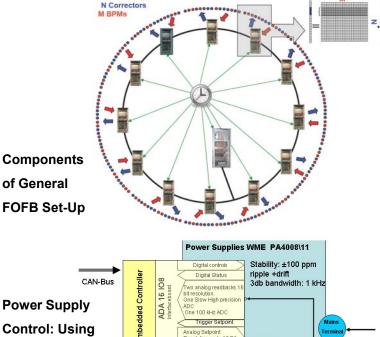
### Fast orbit feedback (FOFB) Phase I

### Status:

Fast BPM Data Acquisition: Existent (100%)

•2.4 kHz Sampling Rate•FFT Diagnostic Use: 0.5 – 200Hz

Fast Set Point Distribution: Operational (100%)


Digital I/O board modified
Reflective Memory: BPM DAQ, PS IOCs
Known Time Budget: < 8ms/cycle</li>

Optimized Algorithms: currently tuned (20%)

New Fast Powersupplies: 8/112 Installed

- •Transfer function: up to 200Hz
- •Control flexibility
- Comparable Specs @ +/- 8A, 40V

• Purchase and Installation of all new 112 corrector power supplies till beginning of 2012

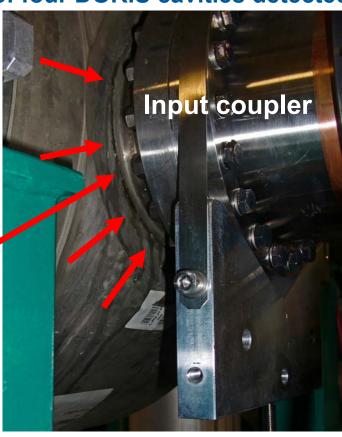


CAN-Bus Power Supply Control: Using existing I/O, Analog Modulation Input Open for Future Requirements

• Incremental setup, characterisation, tuning

- → routine operation of fully completed system mid 2012
- $\rightarrow$  expected bandwidth 50 100 Hz

This was the plan till 01.11.2010


### Preservation slows down up-grade

### 01.11.2010 massive water leakage at one out of four DORIS cavities detected



water leakage at welding joint

- cavity replaced by our last spare (DORIS)
- now BESSY II operates without backup (three cavity operation with reduced parameter possible; but no operational headroom)
- replacement of cavities was planed for 2009/2010; sacrificed by HZB merger
- slow down FOFB upgrade and immediately start purchase of two HOM damped cavities (modified BESSY design) → will take ~ 12 – 18 month
- design of new girder + cooling water distribution to install 2 new cavities together with 2 DORIS cavities  $\rightarrow$  later replacement of all old DORIS cavities



## New injector linac (from THALES)

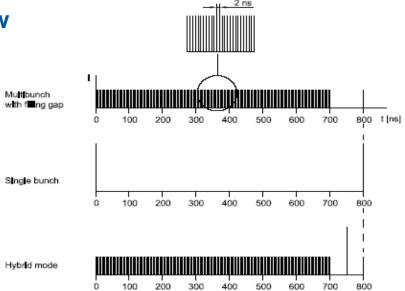
b)

c)

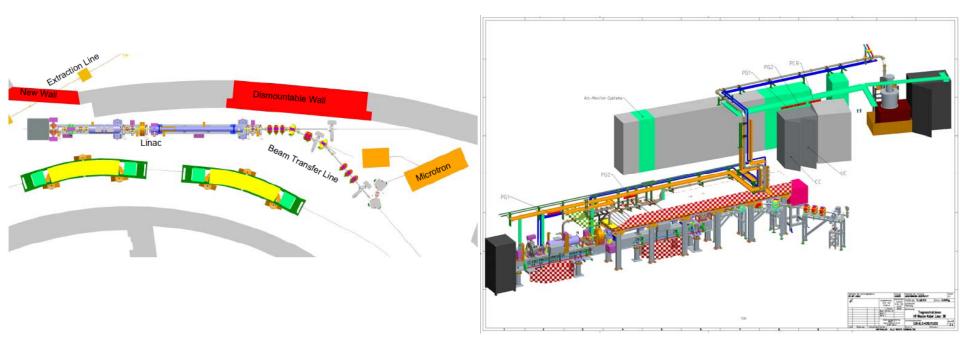
# Why replacing the microtron by a new injector linac?

Increase capability for flexible bunch population patterns (bunch pattern equalizer)

 $\rightarrow$  for femto sec slicing, and other time domain experiments


Provide high single bunch current

 $\rightarrow$  for top-up operation


Microtron 50MeV, 10Hz max.Multi-Bunch:3nCSingle-Bunch:0.012nC

### Linac 50MeV, 10Hz max.

Multi-Bunch: 3nC Single-Bunch: 0.35nC (x30)







- Installation of "big" linac components take place in BESSY shutdown 08/09-2010
- Installation continued parallel to BESSY user operation (cabling, interlock, hardware tests)
- 18.10.2010: successful verification of radiation protection concept and installations
  - $\rightarrow$  operation permit issued 28.10.2010
  - $\rightarrow$  rf-conditioning, gun conditioning started, first beam tests 12/2010
- 02-2011: site acceptance test of linac



electron gun and linac in booster synchrotron tunnel

klystron modulator on gallery

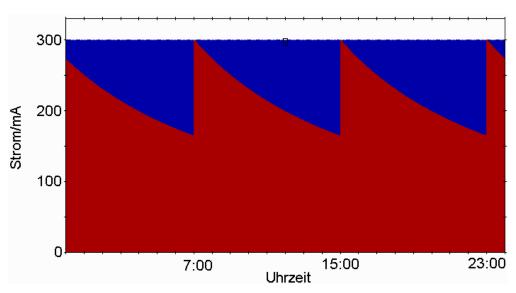
still parallel to user operation /



- 03-2011 start up of transfer Repair On site ?
- 03/04-2011 first injections into synchrotron
  - in accelerator test shifts

**Repair in factory ?** (de-installation needs deconstruction of concrete brick wall, establishing of line operation routines in for 2 - 3 weeks as fall back  $\rightarrow$  standard use being the shutdown for 2 - 3 weeks as fall back

start of injection into BESSY

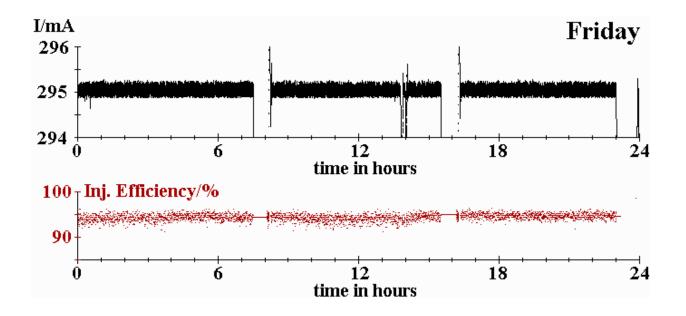

"Continuous" injection of flexible adjustable charge portions (for 10<sup>-3</sup> current stability at 300mA and  $\tau$ =8h  $\rightarrow$  0.24nC all 30s)

Accelerator and beamlines in optimized thermal equilibrium ! (Goal: Heat death of the universe)

 $\rightarrow$  increased stability

Constant single bunch charges

 $\rightarrow$  higher efficiency




- Injections with open beam shutters
- Injections with closed IDs (to be precise: under all possible configurations of the complete set of IDs)

Drawback: BESSY was not designed for TopUp (injection systems, shielding, ...)

- radiation protection (must guarantee nearly the same losses as in decay mode)
  - $\rightarrow$  guarantee 90% injection efficiency under all conditions
  - $\rightarrow$  establish new restricted areas near to front ends
  - $\rightarrow$  test period necessary with BESSY floor as control area (restricted access)

### Test Run in 02-2008: (only selected user, BESSY floor was inaccessible)



• large orbit distortion of stored beam due to non closure of injection bump (~mm)

• injection efficiency strongly depends on ID settings; especially APPLE II undulators (dynamic aperture limitation)

→ new concept for injection kicker ("non linear kicker" = no field on axis of stored beam)
→ sophisticated compensations schemes for IDs ("magic fingers", "L-shims", "current filaments")

## Top-Up operation

### Shutdown 08/09-2010

- 2nd current monitor for injection efficiency interlock
- new power supplies for booster sextupoles (dynamic chromaticity compensation for high single bunch currents)
- installations for radiation interlock systems
- Installation of first prototype of a "non linear pulsed injection kicker" (worldwide first)



## **Top-Up operation**

- 1.Q 2011 interlock systems ready
- 2.Q 2011

high single bunch currents from new linac ??

• 3.+4. - Q 2011

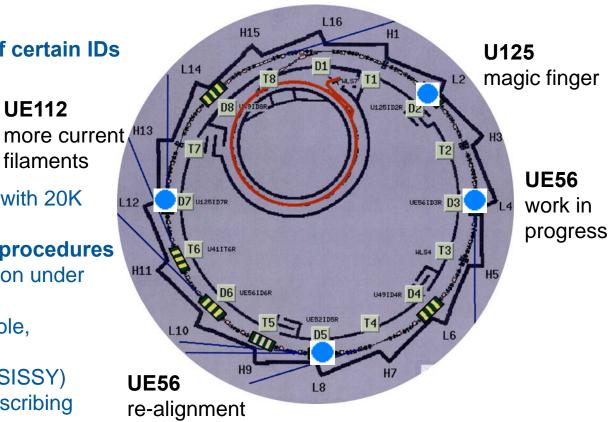
all IDs compensated and determination of influence on inj. efficiency (alone and as orchestra)

filaments

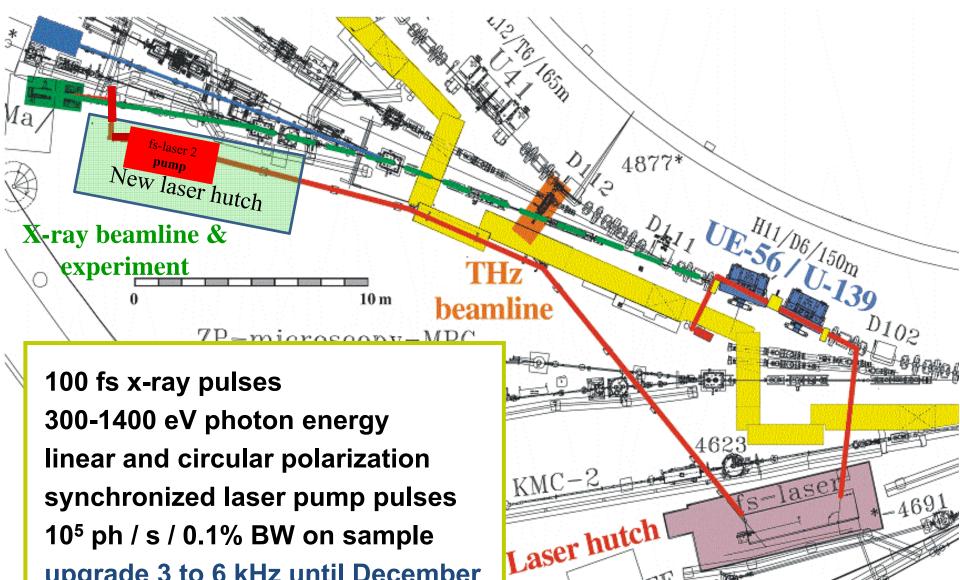
**Outcome ?** 

- $\rightarrow$  maybe parameter space of certain IDs needs to be restricted for **TopUp operation UE112**
- 2012 Start Top-Up

### Still to be studied:


 operation of 7T multipole wiggler with 20K vacuum chamber in terms of

LHe consumption and refilling procedures

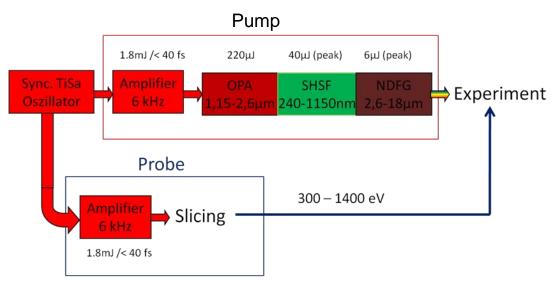

 re-organisation of BESSY operation under **Top-Up conditions** 

(Top-Up periods as long as possible, low- $\alpha$  mode, ...)

- Influence of new optics and IDs (SISSY)
- Establishing a machine model describing **BESSY** as it is



## **Upgrade Femto-Slicing**




Tab

upgrade 3 to 6 kHz until December

### Laser Upgrade 2010 – FemtoSPEX\*

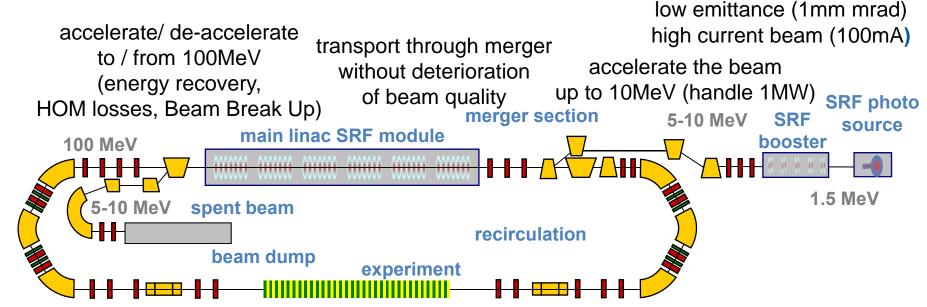
Replacement of the slicing laser system by a coupled two amplifier system seeded from one oscillator



**Objectives** 

- 6 kHz repetition rate (instead of 3 kHz)
- Variable wavelength excitation 0.24-18 µm
- Improved day-to-day performance

Commissioning underway – variable wavelength 2011


### **Further projects**

- Upgrade zone plate monochromator
- Energy dispersive detection
- Long-term: in-vacuum undulator and hard x-ray beamline
  - \* BMBF funding, Prof. U. Bovensiepen (Univ. Duisburg-Essen)



### **BERLinPro = Berlin Energy Recovery Linac Project**

100MeV, 100mA ERL that includes all the key aspects of ERL based light sources A accelerator science and technology experiment generate a



#### beam manipulation

manipulate the beam (pulse compression)

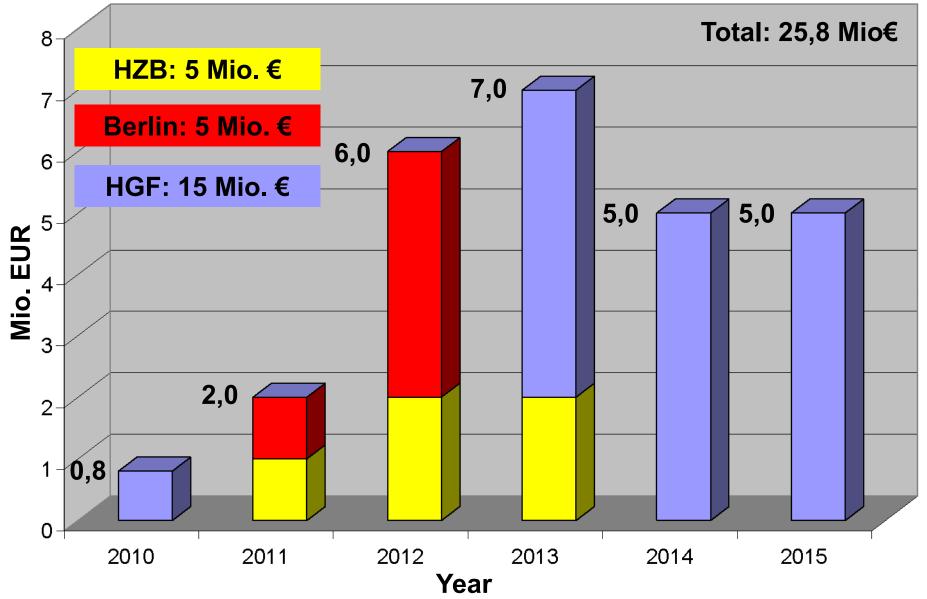
| rec                            | ir <b>tiglaflex</b> he   | flexibility       |
|--------------------------------|--------------------------|-------------------|
| max. beam energyused beam (ene | e <b>ngomev</b> read, em | thaomey           |
|                                | ckom Anac,               |                   |
| nominal bunch charge CONtro    | 1 77 pc beam loss        | up to ~10pC       |
| pulse length                   | 2ps                      | down to ~ 100fs   |
| Rel. energy spread             | ~10-4                    | ~10 <sup>-3</sup> |
| rep. rate                      | 1.3GHz                   | variable          |
| normalized emittance           | < 1mm mrad               | some mm mrad      |

19

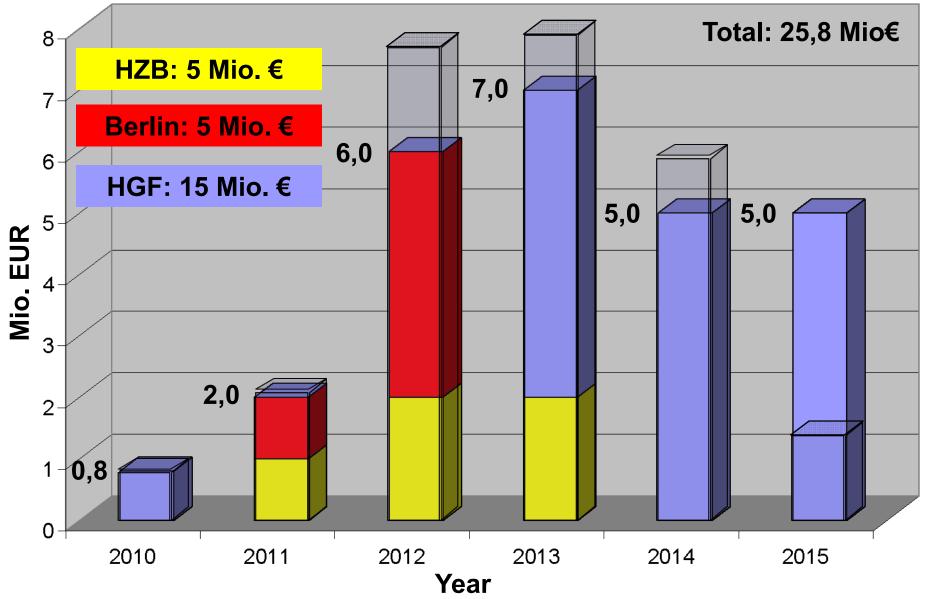


- Application to Helmholtz-Association (HGF) in 2008
   → Excellent rating for BERLinPro (together with FLASHII)
- Lack of funding for 2011 + 2012 (due to change in financing for large investments > 15Mio€ of HGF)
  - → Decision of Helmholtz-Asociation to fully finance only one project: FLASH II

but:


- June 2010: Federal State of Berlin and HZB decide to provide each 5Mio€ for 2011 to 2012
- 8<sup>th</sup> of October 2010: Senat of Helmholtz-Association decide to finance BERLinPro with 15Mio€ in 2013 - 2015

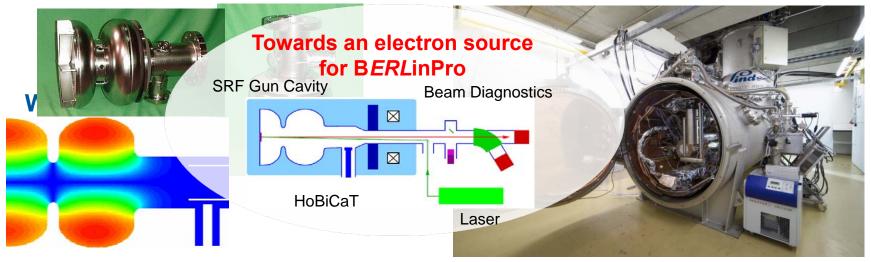
We already started in 2010 (with 600k€) the sc RF gun business!


### We already started in 2010 (with 600k€) the sc RF gun business!

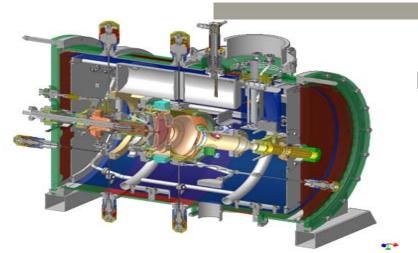
|             | 01/2011 | first beam of srf photo electron source<br>(start of accelerator physics experiments) |
|-------------|---------|---------------------------------------------------------------------------------------|
|             | 08/2012 | technical design report ready                                                         |
| <b>MS 1</b> | 12/2012 | building ready                                                                        |
|             | 06/2013 | infrastructure ready                                                                  |
| <b>MS 2</b> | 08/2013 | first beam of srf photo electron source No. 1                                         |
|             | 04/2014 | booster module ready                                                                  |
| <b>MS</b> 3 | 07/2014 | start srf photo electron source at BERLinPro                                          |
| MS 4        | 07/2015 | first beam through booster                                                            |
|             | 09/2015 | linac module ready                                                                    |
| <b>MS 5</b> | 12/2015 | first beam through linac                                                              |
|             | 2016    | recirculation, energy recovery → ERL accelerator physics program                      |

## BERLinPro: Budget from HZB, Berlin and HGF




## BERLinPro: Project costs (from project plan) versus funding




### BERLinPro: Status gun development

SRF Cavity – BNL/DESY/JLAB/HZB/Soltan collaboration

SRF Cavity Test Facility – HoBiCaT at HZB

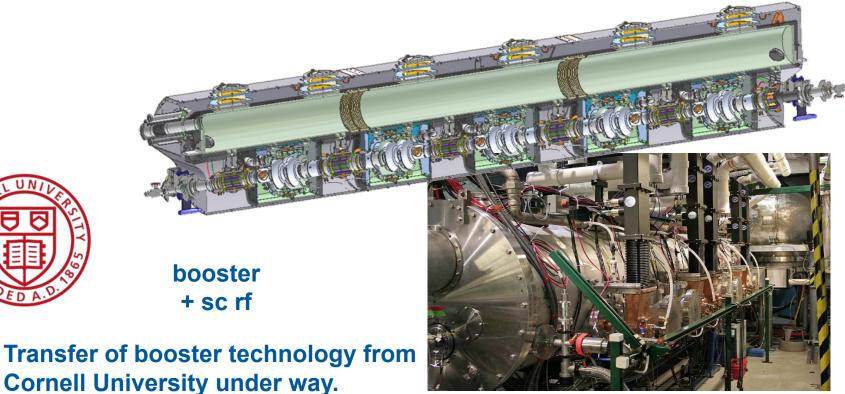


### First Pb coated srf photo gun: operational 02/2011



Joint activity with FZD started to develop a generic cryo module design. Development of 1.6 cell sc gun cavity with nc high quantum efficiency cathode (CsK<sub>2</sub>Sb). Staged approach: Gun 1: Beam dynamcs Gun 2: cathode integration (low emittance, high bunch charge ~ 10mA) Gun 3: high current, high rep. rate







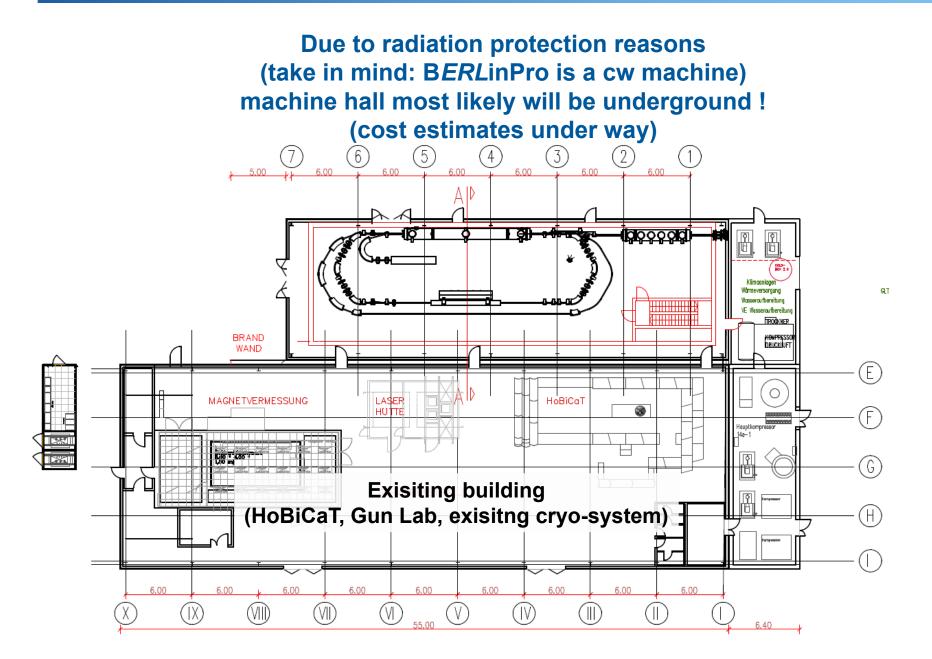




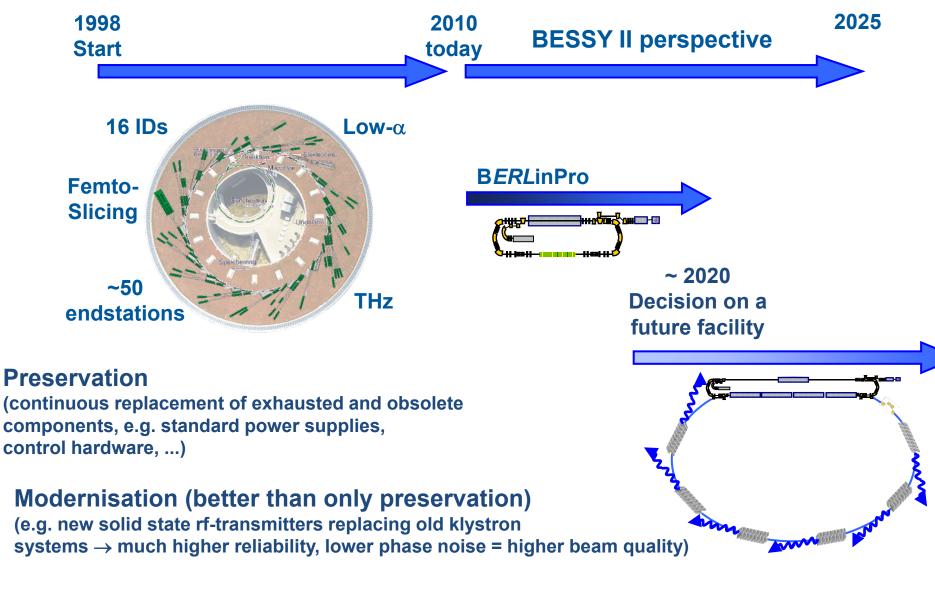

### **BERLinPro: SRF booster + Linac cavities**






Consultant agreement signed, technical drawings received.

High current linac cavity development together with: Aiming for waveguide HOM absorbers combined with ferrite ring on beam pipe (for higher modes).






BERLinPro: building



### **BESSY II perspectives**



**Up-Grade = Providing new and unique capabilities** 

- new EU HOM damped cavities (~1500k€)
  - replacement of the old (30a) DORIS cavities with their suspicious mode damper fingers (only few spare parts still available) limiting single bunch currents
  - presently the last spare was installed in BESSY
  - two of four cavities at BESSY are suspicious
  - $\rightarrow$  extraction more HOM power, more stable beam conditions at high currents
  - $\rightarrow$  no problems with higher single bunch currents
- new solid state rf-transmitters (~2500k€)
  - ever increasing problems with purchasing of klystrons and IOTs
  - three of four operational klystrons are near to the end of their lifetime
  - only three spare klystrons in house; spare parts only from single source
  - $\rightarrow$  due to modularisation higher redundancy and reliability
  - $\rightarrow$  modern LLRF systems with lower phase noise resulting in more stable beam conditions, especially in low- $\alpha$  mode
- new IGP (vacuum pump) power supplies (with pressure dependent HV) (~700k€)
  - old power supplies not longer reliable
  - $\rightarrow$  reduction of average vacuum pressure expected  $\rightarrow$  increasing beam lifetime
- new digital transverse and longitudinal feedback system (~250k€)
  - transverse system is only analogue; longitudinal system is not operational
  - $\rightarrow$  new diagnostic possibilities
  - $\rightarrow$  operational headroom

### **BESSY II perspectives: Preservation with Modernisation**

- refurbishment of extraction and injection elements of booster and storage ring (solid state pulser) (~500k€)
  - present system maybe will not withstand permanent Top-Up operation
  - $\rightarrow$  better timing accuracy, more stable beam (Top-Up Phase II)
  - $\rightarrow$  guaranteeing operational reliability
- refurbishment of MP-WLS and WLS (3) (~600k€)
  - MPW will not withstand operation of one week with Top-Up (TopUp requires operation for as long as possible)
  - cryogenic cold heads needs to be refurbished at three WLS
- $\rightarrow$  longer permanent operation
- $\rightarrow$  less maintenance (frees man power for BERLinPro and saves costs)
- new quadrupole power supplies (~830k€)
  - old power supplies not longer reliable; lots of permanent maintenance
- new central control room for BESSYII and MLS (~800k€)
  - present control room is not suited to be permanently manned (noise, ergonomics)
  - need new hardware for display of machine states, remote control, ...

# Over the next 3 to 5 years (2011 – 2015) this program needs an total investment of 8200 k€

• Fast Orbit Feedback Phase II (~1500k€)

(full digital, higher precision beam position monitor systems, new data distribution (network)


- $\rightarrow$  better suited to maintain beam with highest stability
- → allows for more sophisticated beam optics modelling which results in a more accurate machine model and easier ad to new requirements of experiment
- sc Overvoltage cavity system (~3000k€) (multi-cell HOM damped cavity module at third harmonic, similar to ERL)
   would allow low a mode (bunch length ~ 1nc) with 40mA average current
  - $\rightarrow$  would allow low- $\alpha$  mode (bunch length ~ 1ps) with 40mA average current (two order of magnitude higher than presently available)

needs detailed beam dynamics studies and srf-developments prior to a possible implementation

• ... maybe lots of other ideas! One needs to start a process to define the future!

A BESSYII upgrade program needs a careful preparation phase (1 – 2a) and one would estimate necessary investments in the order of 2 to 3 Mio€ / a over 5 years.

> Nothing of that is funded yet. Management needs to be convinced. Priorities needs to be defined.

