Status of Elettra, top-up and other upgrades

Emanuel Karantzoulis

ESLS XVIII Workshop

ELETTRA / Trieste, Italy / 2010 November 25-26

Past and Present Configurations

2008 and 2010: transition years

Decay mode, 2 GeV (340mA) and 2.4 GeV (140) – SRFEL at 1 GeV.

ESLS XVIII Workshop

26 beam lines

of which major upgrades

XRD1

SuperESCA

SR-FEL (2 GeV, currently 1.8 GeV and 130 nm)

2 under construction

Microflurescence

XRD2

- 2 GeV multibunch / hybrid / very small demand for single bunch
- 2.4 GeV multibunch / hybrid
- 1-1.8 GeV SR-FEL single, 4-bunch
- 0.8-1.0 GeV 4 bunch, CSR also for pump-probe experiments

5000 hours/year for users. For 2011 total 6560 hours

11 ID sections with PM wiggler, PM undulators: planar, APPLE II, canted, short; electromagnetic (circular polarization) and a superconducting wiggler. Also many bending beam lines including one for Mammography and one IR (THz)

Allow the users to change gaps but not beam position/angle (we set it).

- 24 hours per day 7 days a week for periods from 4 to 8 weeks with 1 to 2 weeks shutdown
- Group of 14 operators , shift in pair , 3 shifts per day
- Elettra runs as a project (ODAC) that enters vertically to the matrixed structure of ST. Uses 104 persons for 28.8 man years, has 28 task leaders corresponding to the subsystems while 19 of them have dedicated budget; for 2010 the budget for functioning of the complex was 620 k€

ESLS XVIII Workshop

Elettra's "new" injector

- 2005 project funded
- 2007 autumn connection with SR
- 2008 Finished on time (3 March 2008 for user shifts already programmed since 2007) and within budget
- Difficulties with the booster main PSs
- Stability
- Reproducibility

100 MeV pre-injector

Performs well, still margin for improvement especially on the klystron discharges (almost one per day and many false)

Spare gun and modulator constructed (redundancy)Effort on water/ambient temp stability

Linac made of a thermionic gun, cathode Th306 Thales, a 500 MHz pre bunching cavity, an S-band 3 GHz bunching structure and two LIL (CERN) 5 m accelerating sections of about 50 MeV each providing thus ≥10 MeV /m

The sections are powered by a 3 GHz 45 MW pulsed Thales 2132A S-band klystron using a MDK modulator

ESLS XVIII Workshop

Booster

Faced problems mainly due to big PSs (also their controls); hard work of about 1 year, main problems fixed

- <u>Acceptable</u> operations established. Booster operates at <u>full cycle (2.5 GeV) and up to 3 Hz</u>
- Full energy injection to Elettra at any energy and any filling (multibunch , single bunch ,few bunch) up to 2.4 Hz rep. rate with efficiencies up to 100%

RF system taken from Elettra (RF9) 500 MHz 60 kW (TV klystron) and a 5-cell PETRA type cavity. Power transmission via coaxial line.

ESLS XVIII Workshop

Elettra Availability

ESLS XVIII Workshop

ESLS XVIII Workshop

ESLS XVIII Workshop

Top Up

Implementation to the machine achieved within one year (2009)

Radioprotection measurements finished as scheduled by end of March 2010. However due to 2 low gap chamber installation during the April shutdown some more controls were required in May.

On May 10, top-up operations for users was implemented at 2.0 GeV. On May 24, top-up operations for users was implemented at 2.4 GeV

	elettra	Machine	e Status				
		Course	200.40				
	back to homepage	Lurrent	299.40	mA			
	ELETTRA	Energy	210	2.41			
_	0.13	Oneration M	2.000 c	nch			
	organisation	Operation P	ode Marci Da	nen			
	user information =	Machine	informatio	n			
	access request a						
	B operations	Machine sta	tus : Users d	edicated		_	
	machine status *	Next Users o	ledicated inj	ection: 21 Ma	y at TOP-U	P mod	
	operating schedule •	Machine Ope	erator: Pasq	ualetto M.			
	beamtime allocation •	Top	oup status fo	r beamlines a	vailable at li	ink:	
	parameters	140.1	05.3.130/blc TOPU	s/FRONTEND/ JP Status lege	MACHINE/T	CPS_1	
	operations and #	1					
	development	ON - 1	injection, RU	nabled, WARM NNING - injec	IUP - prepar tion running	ing to: •	
	publications	1					
	projects #			Current			
			t i	last 12 hours)		
	visitor guide	488 *	1 1 1				
	intranet						
		388				-	
	Quick Links	288					
	PhD fellowships -						
	Occupational	188					
	Health & Safety						
	Radiation •	8-00-00	BI D		08.00		
	Protection						
	Industrial	Current					
	Liaison Office	488 1		iasc 46 nours			
	employment -	(1997)					
	opportunities						
	welcome office =	300					
	researchers						
	provinement	298					
	avvisi •	188					
	broad area						
	announcements	8					
	Internal •	Thu 32:98	Fri 60.00	Fri 32:00	5at 88:60		
	Services	Ch	arts at: Sat.	22 May 2010	1:57:02 +0	200	
	<u>.</u>						

View the operating status of the beamline.

<u>View</u> the Photon Beam.

elettra

ESLS XVIII Workshop

Operating in top-up

- Fixed current mode (1mA) every 6 min at 2 GeV , 20 min at 2.4 GeV in about 20 pulses at 2 Hz
- Total current loss budget 10 (5 at 2.4 GeV) mA /hour. This allows efficiencies in the range 100 - 60% otherwise blocks top-up for the rest of the hour
- Each beam line is interlocked with dosimeters; above a certain radiation level the beam line is blocked for 4 hours
- Fast dcct already installed will allow bunch to bunch fill for hybrid operations refilling also the single bunch.

Top-up controller

Although at the beginning only 20% of user time was programmed, immediately users wanted top-up at 100%

ESLS XVIII Workshop

Gating

Provided via internet, upon request we provide additional interface boards. In general few beam lines make use of it.

Sometimes certain beam lines (in fast measurements) can get disturbed by the kick of the injection system during top-up.

Usually either the disturbance is marginal or by adjusting the kickers becomes marginal.

Some beam lines however like the IR always use gating.

ESLS XVIII Workshop

Systems stability during top-up

ESLS XVIII Workshop

e-bpm system – ambient temperature effects

No top up, current decay from 330 to 260 mA – slow drift of horizontal beam position in the middle of ID9 of about 7 um in 5 hours

Oscillations are due to the Libera e-bpm electronics being affected by ambient temperature oscillations in the Service Area (± 2 deg) due to a fault on the air conditioning system.

Top up at 300 mA – no drift, peak to peak 1.5 um

ESLS XVIII Workshop

Long term stability

Longest run in top-up

ESLS XVIII Workshop

Ongoing projects

- Installed 2 low gap (9 mm) chambers
- New Undulator (KYMA) for SuperESCA
- Ambient temp stabilization
- Air cooling of hot points
- Realignment
- **BBA**
- 8th corrector
- Photon bpm

ESLS XVIII Workshop

Re-Alignment

A complete realignment is underway. The strategy has been defined and the work is programmed in 3 phases, June and September (survey / bpm tests) and November - December (alignment). The second semester of the Elettra user program has been modified accordingly. Important elements are that more network points will be set, survey will include the bpms and data from BBA will also be used.

Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre			Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
June	July	August	september	Uctober	November	December		Now	June	July	August	september	Uctober	November	
dale M L N W	dale M L N	M dale M L N M	dale M L N	W dale M L N	W date M L N W	dale M L N W	-	New	data MILIN W	date MILNW	dale MILIN V	dale MILIN W	dala MILIN		
4					T SOLSOLSOL				1 u2 u2 u2	1 1				2 u2 u2 u2	M
2 42 42 42			1 02 02 02		3 sd sd sd +	4 1 u2 u2 u2	M		2 u2 u2 u2			1 u2 u2 u2		3 u2 u2 u2 4	▲ 1 sd sd sd M
3 u2 u2 u2 jj	1 af af af af	a si	2 u2 u2 u2 u2	دد	ss 4 sd sd sd	2 U2 U2 U2 4a	G		3 u2 u2 u2 <i>n</i>	1 af af af af 28	• *	e 2 u2 u2 u2 u3		22 4 u2 u2 u2	2 sd sd sd +a G
4 u2 u2 u2	2 af af af		3 u2 u2 u2	1 af af af	5 sd sd sd	3 u2 u2 u2	V	Tot COEC h	4 UZ UZ UZ 5 U2 U2 U2	2 at at at		3 UZ UZ UZ 4 U2 U2 U2	7 at at at	5 UZ UZ UZ 4 U2 U2 U2	
5 u2 u2 u2	3 af af af	4	4 u2 u2 u2	2 af af af	6 sd sd sd	4 af af af	S		6 u2 u2 u2	4 u2 u2 u2	1 u2 u2 u2	5 af af af	3 af af af	7 42 42 42	5 sd sd sd D
	4 UZ UZ UZ 5 UZ UZ UZ	2 112 112 112							7 sd sd sd	5 u2 u2 u2	2 u2 u2 u2	6 u4 u4 u4	4 u4 u4 u4	8 <mark>u2 u2 u2</mark>	6 sd sd sd L
8 sd sd sd	6 u2 u2 u2	3 sd sd sd	7 u4 u4 u4	5 u4 u4 u4	9 sd sd sd	7 u2 u2 u2	M		8 sd sd sd	6 u2 u2 u2	3 sd sd sd	7 u4 u4 u4	5 u4 u4 u4	9 u2 u2 u2	7 sd sd sd M
9 sd sd sd za	7 u2 u2 u2	4 sd sd sd a	8 u4 u4 u4	38 6 u <u>4 u4</u> u4	a 10 sd sd sd a	s <mark>8</mark> u2 u2 u2 ₄s	м		2 S0 S0 S0 23	8 112 112 112 112	(4 SO SO SO 3 5 sd sd sd	/ 8 04 04 04 Ja 9 04 04 04	7 129 14	10 UZ UZ UZ 4	a 8 SO SO SO 49 M
10 sd sd sd	8 u2 u2 u2	5 sd sd sd	9 u4 u4 u4	7 <mark>u4 u4</mark> u4	11 af af af	9 u2 u2 u2	6		11 sd sd sd	9 02 02 02	6 sd sd sd	10 u4 u4 u4	8 u4 u4 u4	12 u4 u4 u4	10 sd sd sd V
77 sd sd sd	9 02 02 02	6 sd sd sd	10 u4 u4 u4	8 u4 u4 u4	12 at at at	10 u2 u2 u2		11cor 1/2/1 h	12 sd sd sd	10 u2 u2 u2	7 sd sd sd	11 af af af	9 u4 u4 u4	13 u4 u4 u4	11 sd sd sd S
12 SO SO SO 13 sd sd sd	11 af af af	sa sa sa	12 af af af	10 af af af	13 af af af	12 af af af	s n		13 sd sd sd	11 af af af	8 sd sd sd	12 af af af	10 af af af	<u>14 u4 u4 u4</u>	12 sd sd sd D
14 sd sd sd	12 af af af	9 sd sd sd	13 u2 u2 u2	11 u2 u2 u2	15 u4 u4 u4	13 \$¥ u2 u2			14 sd sd sd 15 od sd sd	12 af af af 12 u2 u2 u2	9 sd sd sd	13 u2 u2 u2 44 u2 u2 u2	11 u2 u2 u2 12 u2 u2 u2	15 u2 u2 u2 16 u2 u2 u2	13 SCISCISCI L
15 sd sd sd	13 u2 u2 u2	10 sd sd sd	14 u2 u2 u2	12 u2 u2 u2	16 u4 u4 u4	14 u2 u2 u2	м		16 sd sd sd M	14 u2 u2 u2 m	11 sd sd sd a	2 15 u2 u2 u2 ar	13 u2 u2 u2	4/ 17 u2 u2 u2 4	a 15 sd sd sd aa M
16 sd sd sd 24	14 u2 u2 u2	na 11 sd sd sd aa	15 u2 u2 u2	ar 13 u2 u2 u2	47 17 u4 u4 u4 4	15 u2 u2 u2 30	M		17 sd sd sd	15 <mark>u2 u2 u2</mark>	12 sd sd sd	16 u2 u2 u2	14 <mark>u2 u2 u2</mark>	18 <mark>u2 u2 u2</mark>	16 sd sd sd G
17 sd sd sd	15 u2 u2 u2 16 u2 u2 u2	12 sd sd sd 12 sd sd sd	16 u2 u2 u2 17 u2 u2 u2	14 u2 u2 u2 15 u2 u2 u2	18 04130 04	16 u2 u2 u2 17 u2 u2 u2	G		18 af af af	16 u2 u2 u2	13 sd sd sd	17 u2 u2 u2	15 u2 u2 u2	19 u2 u2 u2	17 sd sd sd V
19 af af af	17 af af af	10 sd sd sd	18 112 112 112	16 112 112 112	20 104 104 104	18 112 112 112	₹		20 af af af	17 at at at at t	14 SO SO SO 15 sd sd sd	18 UZ UZ UZ 19 UZ UZ UZ	16 UZ UZ UZ 17 af af af	20 02 02 02	18 sa sa sa Sa 19 sa sa sa D
20 af af af	18 af af af	15 sd sd sd	19 u2 u2 sd	17 af af af	21 u4 u4 u4	19 u2 u2 u2			21 u4 u4 u4	19 u2 u2 u2	16 sd sd sd	20 sd sd sd	18 u2 u2 u2	22 sd sd sd	20 af af af
21 u4 u4 u4	19 u2 u2 u2	16 sd sd sd	20 sd sd sd	18 u2 u2 u2	22 u4 u4 u4	20 u2 u2 u2			22 u4 u4 u4	20 u2 u2 u2	17 af af af	21 sd sd sd	19 u2 u2 u2	23 sd sd sd	21 af af af M
22 u4 u4 u4	20 u2 u2 u2	17 af af af	21 sd sd sd	19 u2 u2 u2	23 u4 u4 u4	21 u2 u2 u2	M		23 44 44 44 23	21 02 02 02 2	18 af af af a	a 22 sd sd sd aa	20 u2 u2 u2	42 24 sd sd sd 4	/ 22 af 130 f 37 M
23 u4 u4 u4 23	21 U2 U2 U2	19 af af af af af	22 sd sd sd :	33 20 UZ UZ UZ 24 UZ UZ UZ	42 24 U4 U4 U4 4	(22 U2 U2 U2 3/	M C		25 14 14 14	22 02 02 02 02	20 112 112 112	23 sa sa sa 24 sa sa sa	22 112 112 112	20 sa sa sa 26 sa sa sa	23 af 2, 21 0
25 u4 u4 u4	23 u2 u2 u2	20 u2 u2 u2	24 sd sd sd	22 42 42 42	26 af af af	24 sd sd sd			26 u <u>1 u</u> 1 u4	24 u2 u2 u2	21 u2 u2 u2	25 sd sd sd	23 u2 u2 u2	27 sd sd sd	25 sd sd sd S
26 u 4.44 u4	24 u2 u2 u2	21 u2 u2 u2	25 sd sd sd	23 u2 u2 u2	27 af af af	25 sd sd sd	SGCD h tot		27 u4 u4 u4	25 af af af	22 u2 u2 u2	26 sd sd sd	24 af af af	28 sd sd sd	26 sd sd sd D
27 u4 u4 u4	25 af af af	22 u2 u2 u2	26 sd sd sd	24 af af af	28 u2 u2 u2	26 sd sd sd			28 u4 u4 u4	26 af af af	23 u2 u2 u2	27 sd sd sd	25 af af af	29 sd sd sd	27 sd sd sd L
28 u4 u4 u4	26 af af af	23 u2 u2 u2	27 sd sd sd	25 af af af	29 u2 u2 u2	27 sd sd sd			29 04 04 04	27 02 02 02	25 128 22	28 sd sd sd 29 sd sd sd m	26 SV UZ UZ 27 UZ UZ UZ	30 sd sd sd	28 sd sd sd M
29 u4 u4 u4	27 u2 u2 u2 28 u2 u2 u2	24 U128 U2	28 sd sd sd	26 x¥ u2 u2	30 u2 u2 u2	28 sd sd sd	M		or aranan	29 u2 u2 u2	26 u2 u2 u2	30 sd sd sd	28 u2 u2 u2	~ [*	30 sd sd sd G
50 04 04 04 78	28 02 02 02		29 SU SU SU . 30 sd sd sd	28 112 112 112	^*] *	30 sd sd sd 37	m G			30 u2 u2 u2	27 u2 u2 u2		29 <mark>u2 u2 u2</mark>		31 sd sd sd V
	30 u2 u2 u2	27 u2 u2 u2		29 u2 u2 u2		31 sd sd sd	5000 h ucor	•		31 u2 u2 u2	28 u2 u2 u2 29 = = = = = = = = = = = = = = = = = = =		30 af af af		
	31 u2 u2 u2	28 u2 u2 u2		30 af af af							20 12 12 12		or ar ar ar	+ +	+++++
		29 af af af	<u> </u>	31 af af af		+					31 u2 u2 u2				
		30 02 02 02 2	ʻI I							· · ·		· · ·			
	1 1	01 02 02 02	1 1	1 1	1 1		··· 1								

ESLS XVIII Workshop

BBA

A beam based alignment project has been approved. All 108 quads will be shunted with modules. Already the prototype is working and expect to have all modules installed and functioning by the shutdown November / December 2010

Automatic measuring algorithm in simulations, use local bumps

	H (micron)	V (micron)
BPM 1.4	300	150
BPM 1.5	400	90
BPM 1.3	80	50
BPM 1.2	150	0

	H (micron)	V (micron)
BPM 9.5	300	600
BPM 9.2	1700	0
BPM 9.3	-445	0
BPM 9.4	200	-100

	H(micron)	V(micron)
BPM 12.1	3022	219

ESLS XVIII Workshop

8th corrector/section

ESLS XVIII Workshop

BPM cooling

Conclusions

- Elettra updates to keep up with the most recent sources
- Top up at both 2 and 2.4 GeV is now the regular mode of operations and it has been indeed a long way i.e. from lacking a full energy injector to top-up
- A big effort towards reproducibility and stabilization is currently under way
- Near future: Upgrade to 2.5 GeV, get Long. FB functional, install skew elements etc.

Many thanks to

all members of the Elettra team (ODAC project)

ESLS XVIII Workshop

Machine Parameters

Storage ring circumference [m] 259.2 Beam height in experimental area [m] 1.3 Number of achromats 12 Length of Insertion Device (ID) straight sections [m] 6(4.8 utilizabile per ID's) Number of straight sections of use for ID's 11 Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunnet between bunches [ns] 14 2/2 2	
Beam height in experimental area [m] 1.3 Number of achromats 12 Length of Insertion Device (ID) straight sections [m] 6(4.8 utilizabile per ID's) Number of straight sections of use for ID's 11 Number of straight sections of use for ID's 11 Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunner bariameta/hording 14 2/2 2	
Number of achromats 12 Length of Insertion Device (ID) straight sections [m] 6(4.8 utilizabile per ID's) Number of straight sections of use for ID's 11 Number of straight sections of use for ID's 11 Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunnes bariameta/anticel 14 2/0 0	
Length of Insertion Device (ID) straight sections [m] 6(4.8 utilizabile per ID's) Number of straight sections of use for ID's 11 Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2	
Number of straight sections of use for ID's 11 Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunnes: bariametal/actions 14 2/0 0	
Number of bending magnet source points 12 Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunger bariangta (antion) 14 2/0 0	
Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2	
Beam revolution frequency [MHz] 1.157 Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2	
Number of circulating electron bunches 1 - 432 Time between bunches [ns] 864 - 2 Tunnes: basismetal/actions 14 2/0 0	
Tunes: beimpte/verticel	
Notice amittenes [am red]	0.7
France turn without Do IkoV	9.7
	619.5
Vidaimun energy lost per uni with DS [kev] (an)	5.5
Chiudai energy [keV] 3.2	1 45
	1.45
Geometrical emittance coupling % ≤ 1%	
Spurious dispersion (at the centre of IDs): horizontal (rms max/min) [cm] 6/2.	
Spurious dispersion (at the centre of IDs): vertical (rms max/min) [cm] 2/0.5	
Operation mode multibunch	
One refill per day (09:30) of duration (incl. ramping etc.) [min] 30	
Injection energy [GeV] 0.75 / 0.9 / 1	
Injected current [mA] 320	140
Machine dominated by the Touschek effect	
Energy spread (rms) % 0.08	0.12
Lifetime [hours] 8.5	26
Bunch length (1 o) [mm] & 5.4	7
Beam dimensions (1 c) &	
ID source point - horizontal/vertical [um] 241/15	283/16
Bending magnet source point - horizontal/vertical [um]	197/30
	101/00
Beam divergence (1 o)	25/0
iD source point - nonzontal/vertical [µrad] 22%. 3	35/8.
Benaing magnet source point - horizontai/vertical [µrad] 263/9 3	370/13
8. The values shown (taking into account the energy spread) are averages	
at the values shown (taking into account the energy spread rate averages,	
disnersion and consideration of uniferent angle and position values of the spanlous	

ESLS XVIII Workshop

Booster

Magnet lattice	FODO with missing magnets
Maximum energy	2.5 GeV
Injection energy	100 MeV
RF frequency	499.654 MHz
Circumference	118.8 m
Revolution period	396 ns
Harmonic number	198
Equilibrium emittance (2.5 GeV)	
Normal Emittance Optic	226 nm.rad
Low Emittance Optic	166 nm.rad
r.m.s. energy spread (2.5 GeV)	7.18 10 ⁻⁴
Energy loss per turn (2.5 GeV)	388 keV
Damping times (h,v,l) (2.5 GeV)	5.1, 5.1, 2.6 ms
Betatron tunes Q _x , Q _y	5.39, 3.42
-	6.8 , 2.85
Natural chromaticities ξ_x, ξ_y	-6.6, -4.7
	-11.1, -5.2
Momentum compaction factor	0.0443
	0.0308
Maximum β_x, β_y, D_x	10.8, 13.8, 1.621 m
	15.0, 17.2, 1.683 m
Peak effective RF voltage	0.84 MV (τ _q ~1 s)
(available 1.1MV)	0.73 MV (τ _q ~1 s)

	Nominal	Low Emitt.	
Beam energy	2.5	2.5	GeV
Beam current	5	5	mA
Energy loss	388	388	keV
Harmonic number	198	198	
Revolution freq.	2.524	2.524	MHz
RF frequency	499.654	499.654	MHz
Mom. compaction	0.0433	0.0308	
Quantum lifetime	1	1	sec.
Overvoltage factor	2.16	1.58	
Total RF voltage	840	730	kV
Energy acceptance	3.07E-3	3.07E-3	
Cavity power	25.20	19.03	kW
Beam power	1.94	1.94	kW
Total RF power	27.14	20.97	kW

ESLS XVIII Workshop

