
### Status of the ASTRID2 project

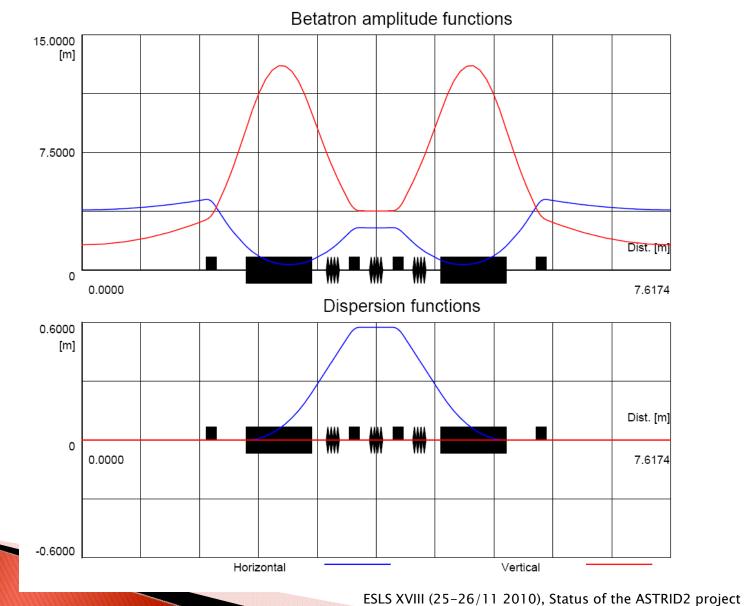
#### Jørgen S. Nielsen Institute for Storage Ring Facilities (ISA) Aarhus University Denmark





### ASTRID2

- ASTRID2 is the new synchrotron light source presently being built in Aarhus, Denmark
- Dec 2008: Received 37 MDKr (5 M€) to
  - Build a new SR light source
  - Convert ASTRID into a booster
  - Move existing beam lines
    - New 2 T Multi Pole Wiggler

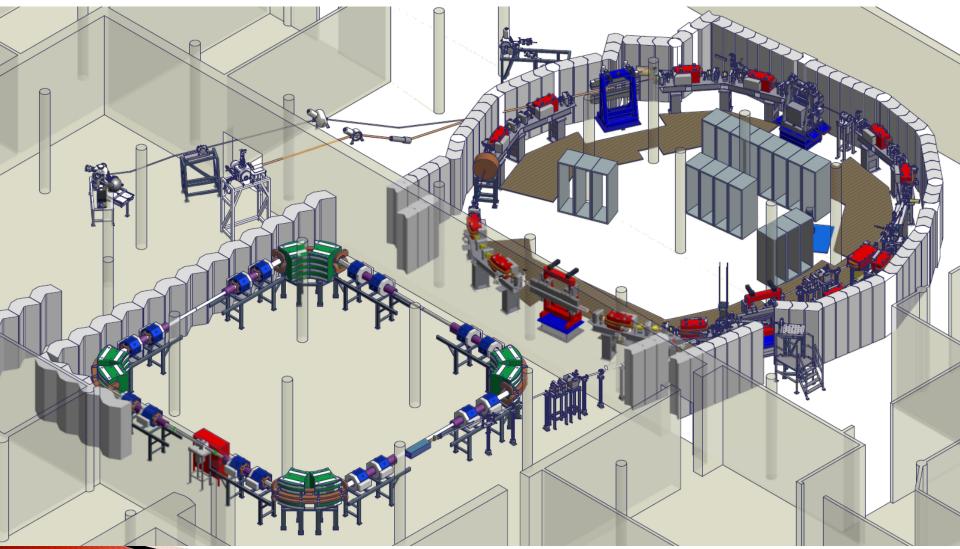

The project should be finished in 2013

# ASTRID2

#### ASTRID2 main parameters

- Electron energy: 580 MeV
- Emittance: 12 nm
- 200 mA • Beam Current:
- Circumference: 45.7 m
- 6–fold symmetry
  - lattice: DBA with 12 combined function dipole magnets
    - Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Will use ASTRID as booster (full energy injection)
  - Allows top-up operation

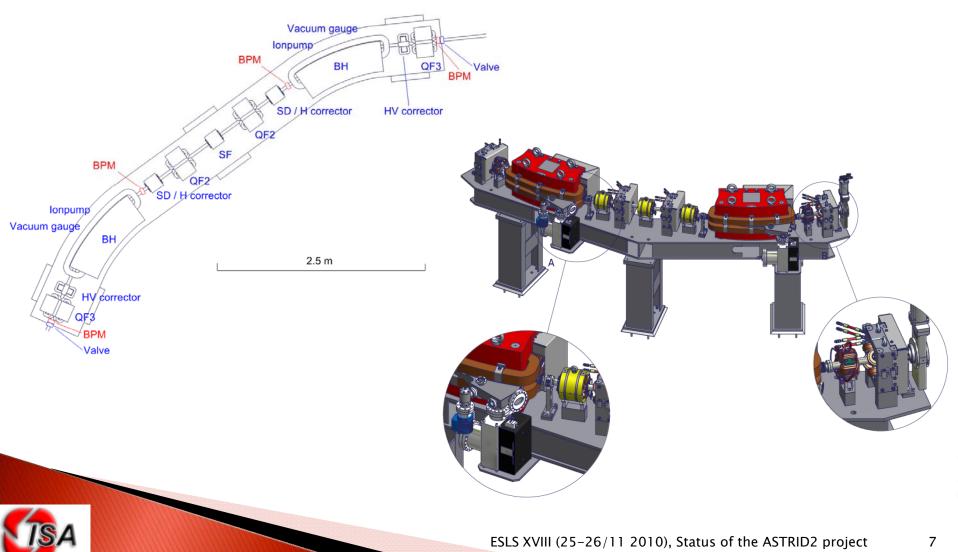
### **ASTRID2** lattice




# ASTRID2 machine and magnets

| ASTRID2 parameters   |             |
|----------------------|-------------|
| Energy               | 580 MeV     |
| Circumference        | 45.704 m    |
| Current              | 200 mA      |
| Straight sections    | 4x2.7 m     |
| Betatron tunes       | 5.185, 2.14 |
| Coupling factor      | <10%        |
| Horizontal emittance | 12 nm       |
| Natural chromaticity | -6, -11     |
| Dynamical aperture   | 25-30 mm    |
| Energy loss/turn     | 6.2 keV     |
| RF frequency         | 105 MHz     |
| Harmonic number      | 16          |
| RF voltage           | 50-150 kV   |

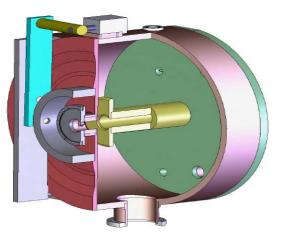
| Combined function dipoles   | 6x2 solid sector           |
|-----------------------------|----------------------------|
| Nominal (max.) dipole field | 1.1975 (1.25) T            |
| Bending radius              | 1.62 m                     |
| Nominal quadrupole field    | -3.219 T/m                 |
| Nominal sextupole field     | -8.0 T/m <sup>2</sup>      |
| Quadrupoles                 | 6x(2+2)                    |
| Magnetic length             | 0.132 m                    |
| Max. gradient               | 20 T/m                     |
| Sextupoles                  | 6x(2+1)                    |
| Magnetic length             | 0.170 m                    |
| Max. sextupole field        | 300 / 180 T/m <sup>2</sup> |
| Nominal sextupole field     | 249 / 161 T/m <sup>2</sup> |
| Dipole corrector angle      | 0 / 1.5 mrad               |
| Correctors                  | 6x(1+1)                    |
| Corrector angle             | 3 mrad                     |


# **ASTRID2 Layout**





# ASTRID2 girder and magnets


• One arc (1/6) of ASTRID2, showing the magnetic elements



# ASTRID2 RF

- 105 MHz (like ASTRID)
- Main RF parameters
  - Synchrotron radiation power:
  - Synchrotron frequency:
  - Harmonic:
  - RF voltage:
  - Cavity power:
  - 5–12 kW FM transmitter
    - Most likely a solid-state amplifier, but a tube-based amplifier is not ruled out
  - Cavity: collaboration with MAX-Lab
    - Presently in tendering

~1.4 kW 10-20 kHz 16 50-150 kV 0.8-7 kW





# ASTRID2 Vacuum

- Each dipole chamber has
  - one 150 l/s ion pump with integrated TSP
  - All interconnecting tubes (Ø40mm) are NEG coated
- Insertion straights
  - ID chambers are NEG coated
- Bake out: In-situ
  - Dipole chambers: ~150°C
  - Interconnecting tubes (NEG): ~200°C
  - Heating: Thin (<0.5 mm) heating foil (like Soleil)
  - Isolation: Thin (~1 mm) ceramic "paper"
    - To prevent excessive heat transfer to magnets



## **ASTRID2** Status

- Most major components, except RF cavity, will be delivered 1<sup>st</sup> quarter 2011
  - magnets on girders, fast magnets, magnet power supplies, vacuum equipment
- Vacuum chamber is being finalized
  - Design of dipole chambers almost ready
  - Interconnection tubes: manufactured, ready for NEG coating
- Timeline
  - Spring/summer 2011: Installation
  - Autumn/winter 2011: Commissioning
  - 2012: First beam lines on ASTRID2
  - 2013: All beam lines transferred to ASTRID2



# **ASTRID Operation**

#### No dedicated operation staff

• I.e. the machine is operated by accelerator physicist (two until now) with the help of a beam line scientist (especially for helping with weekend injections)

#### The control room is only manned during injections

- One injection every weekday (~1/2h)
- Typically one injection in the weekends
- If beam is lost outside normal working hours the users can try to call an operator, but there is not an operator on call
- We have an SMS service, which can alert the operator of machine failure

#### Machine physics and repairs:

- Each Monday morning
- Once a month: ~3 days of machine physics and repairs
- Twice a year: ~14 days of machine physics and repairs
- On a need basics: Longer shutdowns

# **Expected ASTRID2 Operation**

- No dedicated operation staff
  - Usually no one in the control room
- The machine should (hopefully) be fully automatic (Top-up)
  - Plan to implement an automatic beam steering system in the transfer beamline between ASTRID and ASTRID2
    - ASTRID will only be able to deliver a new pulse every 10-15 s
  - Expect some trimming of Microtron and injection into ASTRID on a daily basis