

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ESLS XVIII Workshop, ELLETRA

25th – 26th November 2010

Contents

- Brief Description
 - ALICE
 - Accelerators and Lasers In Combined Experiments
 - EMMA
 - Electron Machine of Many Applications
 - RF Sources
- IOT Operational Experience
 - ALICE
 - EMMA
- Summary

26th November 2010

IOT Operational Experience on ALICE & EMMA

The ALICE Complex

	2K Vacuum Pumping Mezzanine		
	Parameter		Units
Booster	Nominal Gun Energy	350	keV
Cavity / a set the set the set of	Injector Energy	8.35	MeV
	Circulating Beam Energy	35	MeV
	RF Frequency	1.3	GHz
	Bunch Repetition Rate	81.25	MHz
Gun	Nominal Bunch Charge	80	pC
	Maximum Train Length	100	μS
Laser Room	Maximum Train Repetition Rate	20	Hz
	Maximum Average Current	13	μA

IOT Operational Experience on ALICE & EMMA

Energy Recovery Linac

26th November 2010

IOT Operational Experience on ALICE & EMMA

SRF Modules

- 2 x Stanford/Rossendorf cryo-modules
 - 1 Booster and 1 Main LINAC.
- Fabricated by ACCEL.
- Booster module:
 - 8 MeV gradient.
 - 52 kW RF power.
- · Main LINAC module:
 - 27 MeV gradient.
 - 13 kW RF power.

IOT Operational Experience on ALICE & EMMA

SRF Modules

IOT Operational Experience on ALICE & EMMA

IOT RF Power Sources

CPI K51320W

e2v IOT116LS

Thales TH713

Parameters	CPI K51320W	e2v IOT116LS	Thales TH713	Units
Frequency	1.3	1.3	1.3	GHz
Max CW Power	30	16	16	kW
Gain	21	>20	20.9	dB
Beam Voltage	34	25	25	kV
Bandwidth	4.5	>4	>5	MHz
Efficiency	63.8	>60	60.4	%

IOT Operation

- \cdot Operational for 3 years
 - Typically 16 hours/day
 - Approximately 6 months/year
- All IOTs powered from a single 50kV power supply
 - HV limited to ~28kV
 - CPI IOT limited to ~ 21kW[®]
- · RF Requirement
 - Initially a 18mS pulse @ 10Hz
 - Now a 5ms pulse @10Hz

Operational Reliability Issues

- Numerous ancillary power supplier failures
 - Grid, filament and ion pump supplies
- Single 50kV HVPS
 - Stored energy issues under fault conditions due to long HV cable runs (~60m)
 Tek Stop
 - Various types of IOTs ha
 - Filament settings
 - Ion pump reference (cat
 - Wiring could not be stan
- Extensive crowbar testing
 - Individual IOTs and com
 - Earthing issue discovere
- Reliable operation with
 - Grid and heater supplie
 - Spare HV cable + ultra f
 - In house grid supplies v
 - Improved output isolatic
 - Grid protection diodes a
 - Spark gaps added between the set of the se

IOT Operational Experience on ALICE & EMMA

Isolation Window Failure

- Failure occurred with 300W of forward power!
- Booster fully inspected and cleaned
- No obvious failure mechanism discovered
- Failure similar to one at Rossendorf under CW conditions
- Improvements made to isolation vacuum interlocks
- Broadband RF detectors added to the reflected
 power monitoring

Booster Cavity 1

IOT Operational Experience on ALICE & EMMA

IOT Issues – e2v IOT116LS

- Tube failure
 - After ~18 months
- Tube gassed up on application of filaments
 - Tube unable to sustain HV
- Failure believe to be due to the tube being operated with too high a quiescent current
 - ⇒ Leading to a melted collector or body
 - ⇒ Poisoned cathode due Cu deposition
- Additional protection added to HV PLC
 - DC current trip level included HV PLC program
 - Individual IOT current monitoring

OT Issues – CPI K51320W

- Issues encountered with loss of output power
- Discovered the input cavity had moved off frequency
 - Difficult to tune and maintain a good input return loss
- Similar issue encountered on spare IOT system
- Resolved by tuning the input whilst tightening the screws on the input base plate
- An improved input cavity has been supplied
 - To be installed and evaluated

IOT Issues – Thales TH713

- Issues encountered with loss of output power
- Input stub very sensitive to movement
 - Poor input match

Energy Recovery – 20.8MeV

EMMA

Electron Machine of Many Applications

 Proof of principal Non-Scaling Fixed Field Alternating Gradient Accelerator

RF Cavities

Waveguide Distribution System

Machine Parameters	Value	Units
Frequency	1.3	GHz
Number of Straights	21	
Number of Cavities	19	
Total Acc per Turn	2.3	MV
Upgrade Acc per Turn	3.4	MV
Beam Aperture	40	mm
Pulse Length	1.6	mS
RF Repetition Rate	5-20	Hz
Phase Control	0.3	0
Amplitude Control	0.3	%

Cavity Design & Specification

Parameter	Value		
Frequency (GHz)	1.3		
Shunt Impedance (MΩ)	2.5		
Realistic (80%)	2.0		
Qo	20,000		
R/Q (Ω)	100		
Tuning Range (MHz)	-4.0MHz to +1.5MHz		
V _{acc} (kV)	120	180	
P _{diss} (kW)	3.6	8.5	
Ptot incl 30% Overhead* (kW)	4.7	11.1	
* I I DE + Distribution			

" LLRF + Distribution

IOT Operational Experience on ALICE & EMMA

High Power RF Amplifier

- CPI's VIL409 Heatwave[™] IOT-based RF high power amplifier
- 50kV capacitor charging power supply
- 90 kW CPI IOT (VKL9130B)
- 1.5 kW solid state amplifier produced by Bruker, (BLA1500 RF SSPA)
- Embedded processor providing:
 - System control
 - Interfacing with the EMMA EPICS control system

IOT Operational Experience on ALICE & EMMA

IOT Operational Experience

- VKL9130B IOT was developed specifically for EMMA broadband application
 - 90kW peak power
 - 1.6ms pulse, 1 20Hz
 - 1.2960 1.3015GHz
- Installation and site acceptance completed 2nd October 2009
- Presently commissioning EMMA
- IOT typically run at <30kW at 1.3 and 1.301GHz.
- Operating at 3Hz due kicker power supply limitation
- \cdot $\,$ To date no operational issues with the IOT $\,$
- During system testing at CPI, the input cavity was replaced for a new one
 - An improved design spare was also supplied, but not yet installed

A Wheelhouse

EMMA Operation

- RF system commissioned in 3-days
- · Cavity phasing
 - Co-phasing initially set roughly using the known phase offset due to the ToF.
 - Individual cavity phase set by beam loading analysis using Libera LLRF system
 - Global phase analysed
- 1000s of turns with no RF
- 10s -100s of turns with RF

26th November 2010

IOT Operational Experience on ALICE & EMMA

Summary & Future Plans

ALICE

- Experience gained in the operation of 3 types of IOTs
 - Reliability issues experienced
- Reliability of HVPS and ancillary systems improved
- RF protection systems improved
- Energy Recovery achieved
- Future work:
 - Linac replacement: DICC 7-cell cryomodule to be installed 2011
 - Replacement of CPI input
 - Development and testing of a digital LLRF system

EMMA

- Commissioning on-going
- Future work:
 - Optimisation of the RF system for operation
 - Develop the RF set-up
 - Increase RF power