

6th Microbunching Instability Workshop Trieste, Italy / 6 - 8 October 2014

Benefits of the laser heater induced energy spread for high harmonic conversion in HGHG FEL

<u>E. Ferrari</u>^{1,2}, G. Penco¹, E. Allaria¹, S. Spampinati¹, L. Giannessi^{1,3}, W. Fawley¹, Z. Huang⁴

- 1. Elettra Sincrotrone Trieste;
- 2. Universita' degli Studi di Trieste;
- 3. ENEA C.R. Frascati
- 4. SLAC National Accelerator Laboratory

Outline

★ Fermi experimental setup

- ★ Impact of the laser heater on seeded FEL
- ★ Non-Gaussian effects

Experimental setup

Fermi scheme

For more details on the FERMI scheme

Laser heater – FEL intensity

But if we enlarge the scan range...

The induced energy spread is monotonic

Dependence on R56 and seed

Dependence on FEL wavelength

The number, position and relative intensity of secondary peaks can be tuned

How to explain this behaviour?

PRL 112, 114802 (2014)

PHYSICAL REVIEW LETTERS

week ending 21 MARCH 2014

Impact of Non-Gaussian Electron Energy Heating upon the Performance of a Seeded Free-Electron Laser

E. Ferrari,^{1,2,*} E. Allaria,¹ W. Fawley,^{1,3} L. Giannessi,^{1,4} Z. Huang,³ G. Penco,¹ and S. Spampinati^{1,5,6,7}
¹Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
²Università degli Studi di Trieste, Dipartimento di Fisica, Piazzale Europa 1, 34127 Trieste, Italy ³SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ⁴Enea, via Enrico Fermi 45, 00044 Frascati, Roma, Italy
⁵Laboratory of Quantum Optics, University of Nova Gorica, 5000 Nova Gorica, Slovenia
⁶Department of Physics, University of Liverpool, Oxford Street L69 7ZE, Liverpool, United Kingdom
⁷Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane WA4 4AD, Daresbury, Warrington, United Kingdom (Received 11 October 2013; published 21 March 2014)

Without gain, the FEL intensity is almost proportional to the square of the bunching b_m

Coherent emission from three radiators only

Bunching

(1)
$$\mathbf{b}_{\mathbf{m}} = \exp(-\frac{1}{2}\mathbf{m}^{2}\mathbf{D}^{2}\sigma_{\gamma}^{2})\mathbf{J}_{\mathbf{m}}(\mathbf{m}\mathbf{D}\Delta\gamma)$$
 L. H. Yu

 $\mathbf{D}=rac{\mathbf{2}\pi\mathbf{R_{56}}}{\gamma_{\mathbf{0}}\lambda}$ Dispersion

 R_{56} Momentum compaction

 γ_0 e⁻ energy

- λ FEL wavelength
- m Harmonic number
- σ_{γ} Energy spread (rms)
- $\mathbf{J}_{\mathbf{m}}~$ m-th order Bessel

 $\Delta\gamma$ FEL energy modulation

Longitudinal Phase Space and heating

Non-Gaussian energy spread

Energy distribution and heating

Simulated energy profile

Energy distribution and heating

Simulated energy profile

Normalized sim. energy profile

Energy distribution and heating

Measured energy profile

The shape of the energy distribution is, as expected, independent on the heater power

Bunching with non-Gaussian energy spread

(2)
$$\mathbf{b}_{\mathbf{m}} = \exp(-\frac{1}{2}\mathbf{m}^{2}\mathbf{D}^{2}\sigma_{\gamma}^{2})\mathbf{J}_{\mathbf{m}}(\mathbf{m}\mathbf{D}\Delta\gamma)\mathbf{S}_{\mathbf{L}}(\mathbf{m}\mathbf{D}\Delta\gamma,\frac{\sigma_{\mathbf{r}}}{\sigma_{\mathbf{x}}})$$

$$\exp\left(-\frac{\mathbf{R}^2}{2}\right)\mathbf{J}_0\left[\mathbf{A}\exp\left(-\frac{\mathbf{R}^2}{4\mathbf{B}^2}\right)\right]$$

074401 (2004)

Z. Huang, PRSTAB 7,

bunching suppression factor

$$\mathbf{S}_{\mathbf{L}}(\mathbf{A}, \mathbf{B}) = \begin{cases} J_0(A), & \text{if } B \gg 1\\ \frac{2J_1(A)}{A}, & \text{if } B = 1 \end{cases}$$

 σ_{r} laser spot size (in LH) σ_{x} e⁻ spot size (in LH)

(Almost) no gain...

Simulated impact on high-harmonic emission

★ A Laser Heater is routinely used in FEL operations at FERMI.

- ★ The non-Gaussian distribution of the energy spread induced by the Laser Heater has been shown to be preserved up to the linac end and the undulators.
- ★ The shape of the slice energy spread distribution has a significant impact on FEL intensity, as it ultimately determines the bunching.
- ★ In particular, several FEL local maxima as a function of LH intensity have been observed, and can be controlled by tuning the machine parameters.
- ★ The unexpected behavior is well reproduced by previously developed LH theory.

- ★ Preliminary numerical simulations show that the non-Gaussian energy spread can increase the FEL power at high harmonic (i.e. shorter wavelength) in a HGHG FEL.
- ★ The significant increase in emission power could potentially extend the operation range of the single cascade HGHG scheme.

We acknowledge the support of the FERMI COMMISSIONING TEAM

www.elettra.eu

Thanks for your attention!

Laser heater - COTR

As already observed, a small amount of heating is sufficient to dump the COTR at screens downstream the bunch compressor