

Fermi liquid behaviour in strongly correlated metals

D. Stricker,¹ J. Mravlje,² C. Berthod,¹ R. Fittipaldi,³ A. Vecchione,³ A. Georges,^{4,1} and <u>Dirk van der Marel</u>¹

¹ Université de Genève, Switzerland
² Jožef Stefan Institute, Slovenia
³ Università di Salerno, Italy
⁴ Collège de France, France

E-mail: dirk.vandermarel@unige.ch

A reference point for research on a wider range of correlated behaviour is provided by the socalled Fermi-liquids, characterized by a relaxation rate $w^2 + (pk_BT)^2$. The theoretical prediction for the relaxation rate appearing in the optical conductivity is p=2 when considering the experimentally most accessible range $w > k_BT$. A number of recent optical studies have addressed the issue of Fermi-liquid characteristics, reporting indeed w^2 and T^2 for the optical scattering rate of a number different materials. However, a perfect match to the prediction p=2has not been observed. One possible scenario that has been proposed to explain this discrepancy is the presence of magnetic impurities. In a recent study we have investigated Sr_2RuO_4 , a material which can be synthesized in very pure form, with well-established T^2 resistivity below 25K. Here we observe a perfect scaling collapse of $1/\tau$ as a function of $w^2+(p\pi k_BT)^2$ for with w < 36 meV, and temperature below 40K, with p=2. We also observe features in the spectrum at higher energy, which are manifestly beyond the Fermi-liquid model. The sign and size of these features agree quantitatively with the notion of resilient quasiparticles predicted by dynamical mean field theoretical calculations for this compound.

Acknowledgements: This work was supported by the Swiss National Science Foundation (SNSF) through grants 200020-140761 and 200021-146586, by the Slovenian research agency program P1-0044, by FP7/2007-2013 through grant 264098-MAMA, and by the ERC through grant 319-286 (QMAC). Computing time was provided by IDRIS-GENCI and the Swiss CSCS under project S404.