"Novel Superconductors and Synchrotron Radiation: state of the art and perspective" Adriatico Guest House, Trieste, December 10-11, 2014

#### ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap



- Nature of the AFM-orthorhombic (AFO) phase and the "nematic phase":
  - Band folding versus C<sub>4</sub> symmetry breaking
- Superconducting gap anisotropy



#### **Collaborators**

#### **Photoemission expt**

K. Koshiishi, L. Liu, H. Suzuki, J. Xu, K. Okazaki, T. Shimojima (U of Tokyo),
T. Yoshida (Kyoto U), S. Ideta (TUS)
K. Ono, H. Kumigashira (KEK-PF), Y. Ohta, S. Shin (ISSP)
M. Hashimoto, D. Lu, Z.-X. Shen (Stanford U)
A. Ino, M. Arita, H. Anzai, H. Namatame, M. Taniguchi (Hiroshima U)

#### **Samples**

- K. Kihou, C.-H. Lee, T. Ito, Y. Tomioka, A. Iyo, H. Eisaki (AIST)
- S. Uchida (U of Tokyo)
- Y. Matsuda, S. Kasahara, T. Terashima (Kyoto U), T. Shibauchi (U of Tokyo)
- T. Kobayashi, S. Miyasaka, M. Nakajima, S. Tajima (Osaka U)

#### Theory

R. Arita (RIKEN), H. Ikeda (Ritsumeikan U)

H. Kontani, T. Saito (Nagoya U.) S. Onari (Okayama U)

## Outline



Nature of the AFM-orthorhombic (AFO) phase and the "nematic phase":

- Band folding versus C<sub>4</sub> symmetry breaking
- Superconducting gap anisotropy



#### Phase diagram of Fe-based superconductors



#### Phase diagram of Fe-based superconductors



## Magneto-structural transition and possible electronic "nematic phase"





S. Kasahara et al., Nature '13

## Folded Fermi surfaces of BaFe<sub>2</sub>As<sub>2</sub> in the AFO phase



## Folded Fermi surfaces of BaFe<sub>2</sub>As<sub>2</sub> in the AFO phase

#### **LDA** calculation



T. Terashima et al., PRL '11

# Folded Fermi surfaces of BaFe<sub>2</sub>As<sub>2</sub> in the AFO phase by ARPES



## Folded Fermi surfaces of BaFe<sub>2</sub>As<sub>2</sub> in the AFO phase revealed by ARPES



## $C_4$ symmetry breaking in the AFO and "nematic" phases of BaFe<sub>2</sub>(As<sub>1-x</sub>P<sub>x</sub>)<sub>2</sub>



#### Anisotropic band dispersions in the AFO phase of $BaFe_2As_2 - C_4$ symmetry breaking



**ARPES** for  $k_z \sim Z$ , detwinned



# Persistence of the anisotropic band dispersions above $T_{N.S}$



# Persistence of the anisotropic band dispersions above $T_{N,S}$



T. Shimojima et al., PRB '14

#### C<sub>4</sub> symmetry breaking and band folding in Fe-based superconductor: Possible antiferro-orbital order



#### Possible antiferro-orbital order below T\*



#### Summary – AFO and "nematic" phases

- Folded electron and hole Fermi surfaces in the AFO phase revealed by ARPES are in almost perfect agreement with those deduced from the Subunikov-de Haas measurements.
- Not only C<sub>4</sub> symmetry breaking but also band folding survive above T<sub>N</sub>,<sub>S</sub>, suggesting the persistence of an antiferro-orbital order above T<sub>N</sub>,<sub>S</sub> up to T\*.

## Outline

- Nature of the AFM-orthorhombic (AFO) phase and the "nematic phase":
  - Band folding versus C<sub>4</sub> symmetry breaking





## Nodeless s<sub>+</sub> superconducting gap in Fe pnictides

Superconducting gap of K<sub>0.4</sub>Ba<sub>0.6</sub>Fe<sub>2</sub>As<sub>2</sub>

s<sub>+</sub>-wave superconductivity



H. Ding et al., Europhys. Lett. '08

K. Kuroki et al., PRB '09

## Superconductivity with line nodes in BaFe<sub>2</sub>(As<sub>1-x</sub>P<sub>x</sub>)<sub>2</sub>

#### Phase diagram

#### **Penetration depth**



S. Kasahara et al., Nature '13

K. Hashimoto et al., PRB '10

## Superconductivity with line nodes in SrFe<sub>2</sub>(As<sub>1-x</sub>P<sub>x</sub>)<sub>2</sub>

#### Phase diagram

#### **Penetration depth**



T. Kobayashi *et al.*, PRB '13

J. Murphy et al., PRB '13

## Line nodes in order parameter according to spin-fluctuation mechanism





## Superconducting gap on hole Fermi surfaces of BaFe<sub>2</sub>(As<sub>0.65</sub>P<sub>0.35</sub>)<sub>2</sub> and SrFe<sub>2</sub>(As<sub>0.65</sub>P<sub>0.35</sub>)<sub>2</sub>





## Line nodes in order parameter according to spin-fluctuation mechanism



## Possibility of horizontal line nodes in spin-fluctuation mechanism



S. Graser *et al.*, PRB '10.

K. Suzuki et al., JPSJ '11

#### Superconducting gap on hole Fermi surfaces: Combined spin and orbital fluctuations



S. Onari and H. Kontani , PRL '12 T. Saito, S. Onari, H. Kontani, PRB '13

#### k<sub>z</sub> dependence of the superconducting gap on hole Fermi surfaces of BaFe<sub>2</sub>(As<sub>0.70</sub>P<sub>0.30</sub>)<sub>2</sub>



Y. Zhang et al., Nat. Phys. '12

#### k<sub>z</sub> dependence of the superconducting gap on hole Fermi surfaces of BaFe<sub>2</sub>(As<sub>0.70</sub>P<sub>0.30</sub>)<sub>2</sub>



Nearly k<sub>z</sub> independent

T. Yoshida et al., Sci. Rep. '14

#### k<sub>z</sub> dependence of the superconducting gap on hole Fermi surfaces of SrFe<sub>2</sub>(As<sub>0.65</sub>P<sub>0.35</sub>)<sub>2</sub>



## Line nodes in order parameter according to spin-fluctuation mechanism



# Four-fold symmetry of thermal conductivity in magnetic fields in BaFe<sub>2</sub>(As<sub>1-x</sub>P<sub>x</sub>)<sub>2</sub>

#### **Angular dependence**



# Possible line nodes in superconducting gap on electron Fermi surfaces

# Vertical<br/>line nodesLoop-like line nodesImage: Object of the second second

M. Yamashita et al., PRB '11.

Loop-like line nodes



I. Mazin et al., PRB '10

# Superconducting gap on electron Fermi surfaces of BaFe<sub>2</sub>(As<sub>0.70</sub>P<sub>0.30</sub>)<sub>2</sub>



#### Isotropic

Y. Zhang et al., Nat. Phys. '12

# Superconducting gap on electron Fermi surfaces of BaFe<sub>2</sub>(As<sub>0.70</sub>P<sub>0.30</sub>)<sub>2</sub>



T. Yoshida et al., Sci. Rep. '14

# Superconducting gap on electron Fermi surfaces of SrFe<sub>2</sub>(As<sub>0.65</sub>P<sub>0.35</sub>)<sub>2</sub>



# Summary of ARPES experiments on gap anisotropy in isovalent-substituted 122 systems

|                                                                    |                                                  | Hole FS                                                                                      | Electron FS       |
|--------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|
| BaFe <sub>2</sub> (As,P) <sub>2</sub> (x=0.30)                     | Y. Zhang <i>et al</i> .                          | ∆  ~ 0 at <i>k<sub>z</sub></i> ~ Z                                                           | isotropic         |
| (x=0.30, 0.38)<br>(x=0.35)                                         | T. Yoshida e <i>t al.</i><br>T. Shimojima et al. | ∆  > 0 for all <i>k<sub>z</sub></i><br> ∆  > 0 at <i>k<sub>z</sub></i> ~ Z<br>FS-independent | anisotropic<br>—— |
| SrFe <sub>2</sub> (As,P) <sub>2</sub> (x=0.35)<br>before annealing | H. Suzuki <i>et al.</i>                          | ∆  ~ 0 at <i>k<sub>z</sub></i> ~ Z                                                           | isotropic         |
| after annealing                                                    |                                                  | $ \Delta  > 0$ for all $k_z$                                                                 | isotropic         |
| Ba(Fe,Ru) <sub>2</sub> As <sub>2</sub> (x=0.35)                    | L. Liu e <i>t al.</i>                            | ∆  ~ 0 at <i>k<sub>z</sub></i> ~ Z                                                           | isotropic         |

## **Summary – Superconducting gap**

- Superconducting gap anisotropy is material, composition, and disorder dependent even in the limited number of isovalent P- and Ru-substituted systems:
  - Hole FS: Gap minimum or no minimum around  $k_z \sim Z$ .
  - Electron FS: Isotropic or anisotropic.