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the existence ot well-detined quasiparticles in the pseudogap

state: for the underdoped Bi(Pb)-2212 at 130 K the coher-
ence factor Z=0.54+0.03.

The low-temperature behavior

of the pseudogap is remarkably similar to one of the incommensurate charge ordering gap in the transition-
metal dichalcogenides,

electronic instability to

density-wave formation



LDA band structure and Fermi surface: 1111
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Energy scale of 1 eV



Superconducting material: LiFeAs

Energy (eV)
Binding energy (eV)

Renormalization ~ 3
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Spectra of NaFeAs in a wide energy range

band dispersion band dispersion
from calculation from ARPES
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High-energy anomaly in iron-based SC

80 eV, in-plane light polarization
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High-energy anomaly in iron-based SC
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Electron scattering rate in ordinary and
strongly interacting systems

Binding energy (eV)

S.V. Borisenko
IFW-Dresden

2H-TaSe, ZrTe,

17-TiSe,

Bi,Se,

1.0 -L.0 00 1.0-1.0 0.0
Momentum (1/A)

—
1

Binding energy (eV)

N
1

(O8]
1

cuprates

ZrTe,

Bi,Se,

arsenicum
bands

TiSe,

TaSe,
ZiTe,

Bi,Se,

ruthenate
vanadate

iron iands

00 02 04 06

0.8 1.0

Scattering rate, " (eV)

Evtushinsky et al.



Model for high-energy spectral function
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How to understand the electronic structure on
1 eV energy scale (alternative — DMFT)

Experiment Theory = bare band + o?F
(a) =150 eV, vert. pol. | (b) xzfyz band (c) xzfyz band (d) a’Flau)
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Energy scale of 0.1 eV
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Co-SmFeAsO (T.=16K)
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LiFeAs Pt-BaFe,As, K-BaFe,As, Co-BaFe,As,
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Simple way to understand the electronic structure on 0.1 eV scale

11 111 1111

122

S.V. Borisenko
IFW-Dresden




Energy scale of 0.001 eV
(g8aps)
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LiFeAs:
xy band
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Ca-NaFe,As, LiFeAs

Evtushinsky et al. PRB 14

K‘Ba FGZASZ SVB et al. Symmetry 12
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Fermi surface

Gap function from experiment
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Superconducting gap in LiFeAs from three-dimensional spin-fluctuation pairing calculations
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The lack of nesting of the electron and hole Fermi-surface sheets in the Fe-based superconductor LiFeAs,
with a critical temperature of 18 K, has led o guestions as to whether the origin of superconductivity in
this material might be different from other Fe-based superconductors. Both angle-resolved photoemission
and guasiparticle interference experiments have reported fully gapped superconducting order parameters with
significant anisotropy. The system is also of interest because relatively strong correlations seem to be responsible
for significant renormalization of the hole bands. Here we present calculations of the superconducting gap and
pairing in the random-phase approximation using Fermi surfaces derived from measured photoemission spectra.
The qualitative features of the gaps obtained in these calculations are shown to be different from previous
two-dimensional theoretical works and in good agreement with experiment on the main Fermi-surface pockets.
We analyze the contributions to the pairing vertex thus obtained and show that the scattering processes between
electron and hole pockets that are believed to dominate the pairing in other Fe-based superconductors continue
0 do so in LiFeAs despite the lack of nesting, leading to gaps with anisotropic se structure. Some interesting
differences relating to the enhanced d,, orbital content of the LiFeAs Fermi surface are noted.

DOT: 1001103/ PhysRevB 88174516 PACS number(s): 74.70.Xa, 74 20.Rp, 7420 Fg, 7425 Tb
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Reproduction of experimental gap structure in LiFeAs based on orbital-spin fluctuation theory:
§,.-wave, s.-wave, and hole-s.-wave states
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The absence of nesting between electron and hole pockeis in LiFeAs with T, = 18 K afiracts great attention,
as an important hint o understand the pairing mechanism of Fe-based superconductors. Here, we study the
five-orbital model of LiFeAs based on the recently developed orbital-spin Auctuation theories. It is found that
the experimentally observed gap structure of LiFeAs, which is a “fingerprint” of the pairing mechanism, is
quantitatively reproduced in terms of the orbital-Auctuation-mediated £, -wave state. Specifically, the largest
gap observed on the twio small hole pockets composed of (d, 4, ) orbitals can be explained, and this is a hallmark
of the orbital-Aucmwation-mediated superconductivity. The 5, -Wwave gap struciure becomes more anisotropic in
the presence of weak spin Auctuations. As the spin Auctuations increase, we oblain the “hole-s-wave state.”
in which only the gap of the large hole pocket made of the d,, orbital is sign reversed, due to the cooperation
of orbital and spin Auctuations. This gap structure with “sign reversal between hole pockets™ is similar to that
recently reported in (Ba K )FeaAs,.
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Superconductivity from repulsion in LiFeAs:
Novel s-wave symmetry and potential time-reversal symmetry breaking

F. Ahn.' I. Eremin,"" J. Knolle,” V. B. Zabolotnyy,” S. V. Borisenko,” B. Biichner,” and A. V. Chubukov*
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We analyze the structure of the pairing interaction and superconducting gap in LiFeAs by decomposing the
pairing interaction for various &, cuts into s- and 4-wave components and by studying the leading superconducting
instabilities. We use the ten-orbital tight-binding model, derived from ab initio LDA calculations with hopping
parameters extracted from the fit to ARPES experiments. We find that the pairing interaction almost decouples
between two subsets; one consists of the outer hole pocket and two electron pockets, which are quasi-2D and
are made largely out of the 4., orbital, and the other consists of the two inner hole pockets, which are quasi-3D
and are made mostly out of 4. and d,, orbitals. Furthermore, the bare interpocket and intrapocket interactions
within each subset are nearly equal. In this situation, small changes in the intrapocket and interpocket interactions
due to renormalizations by high-energy fermions give rise to a variety of different gap structures. We focus on
s-wave pairing which, as experiments show. is the most likely pairing symmetry in LiFeAs. We find four different
configurations of the s-wave gap immediately below T.: one in which the superconducting gap changes sign
between two inner hole pockets and between the outer hole pocket and two electron pockets, one in which the gap
changes sign between two electron pockets and three hole pockets, one in which the gap on the outer hole pocket
differs in sign from the gaps on the other four pockets, and one in which the gaps on two inner hole pockets have
one sign and the gaps on the outer hole pockets and on electron pockets have different sign. Different s-wave
s-wave B state s-wave C state s-wave [ state
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More precision is heeded !



LiFeAs: more precision
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LiFeAs: structure near center of BZ
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LiFeAs: spin-orbit coupling

Energy (eV)

Calculations: A. Yaresko



What to expect in ARPES spectra
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LiFeAs: k -dependence

hv — scan (from 80 to 30 eV)
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LiFeAs: photon energy dependence

Experiment
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LiFeAs: k,-resolved electronic structure
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LiFeAs: magnitude of SOC at I
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LiFeAs — electron pockets

Electron pockets

Spin-orbit interaction !
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LiFeAs: magnitude of SOC along at MX
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LiIFeAs:
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LiFeAs: Fermi surface in the center of BZ
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Conclusions

Iron-based superconductors are ,,moderately” correlated systems: far from
insulating state but Hubbard bands start to be formed.

DMFT is a proper theoretical tool to describe electronic structure on 1 eV
energy scale: U and J can be extracted from comparison with ARPES.

Orbital-dependent renormalization strongly modifies the low-energy electronic
structure and Fermi surface given by 3D relativistic LDA band-structure, but all
features/dispersions are present.

Significant spin-orbit interaction defines the Fermi surfaces bearing the largest
gaps in optimally doped materials.

Important details of the electronic structure of iron-based superconductors are
not yet understood.



