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Transitions…in time

What can physics tell us about stock market crashes, D.M. TEDx, Dec. 2013
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The Big Data challenge

Storage Class Memory 

5 Science & Technology – IBM Almaden Research Center Jan 2013

Problem (& opportunity): The access-time gap between memory & storage

• Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage, 
and storage capacities are increasing as devices scale down to smaller dimensions…
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…but while prices are dropping, the performance gap between memory and storage
remains significant, and the already-poor device endurance of Flash is getting worse.
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The 

WHAT IS THE 
PSEUDOGAP? problem

pre-formed pairs? pre-formed SC? a vortex state? 
stripes? CDWs or Friedel oscillation? 

Dynamic or static inhomogeneity? Bulk or surface? Ionic or 
electronic origin? Magnetic order?

Or is it just a red herring? (FL theory applies.)
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Fig. 2 (Color online) As the level of doping is increased at T = 0.10,
the lowest energy suppression of DOS is more prominent as well as a
shift in the gap position toward lower energies is observed. The inset
figures show evidence that the gap opening is related to the clusters
with elongated organization. Red and green lines are contribution to

DOS from the two degenerate states S = 1, S = −1 and black and gray
stripes represent regions with such degenerate solutions of the JTC
Hamiltonian. The ratio between both potentials was fixed as VJT/VC =
1. The JT range was limited to the nearest neighbors. Occ. st. and Un-
occ. st. stand for occupied state and unoccupied states, respectively
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Theory 
Oxides

Fermi surface instability, Mott physics (Coulomb repulsion), and strain

localised charge (polarons)
uncharged (delocalised)

localised charge
uncharged

ARTICLES

of the diVerent phases at ambient pressure and their possible
evolution under pressure. We will address each of the above posed
questions separately.

MELTDOWN OF THE MOTT PHASE

The standard way of influencing the Mott phase is to aVect the
ratio between the Coulomb repulsion and the bandwidth. These
two relevant energy scales correspond to the parameters U and t of
the single-band Hubbard Hamiltonian, usually used to consider the
Mott transition,

H = �t
X

hi,ji,�

�
c†

i,� cj,� + c†
j,� ci,�

�
+U

X

i

ni,"ni,#

where ci,� and c†
i,� are the destruction and creation operators of an

electron at site i and with spin �, and ni,� = c†
i,� ci,� is the occupation

operator. For the special case of the triangular lattice of David
stars in 1T-TaS2, t and U map to the overlap of the electronic
wavefunctions defined by the deformation localized at David stars,
and the Coulomb interaction of the electrons above the gap within
the same David star, respectively.

The qualitative understanding of the observed phase transition
comes from the insight that pressure changes both the relevant
energy scales, by decreasing the swelling of the planes related
to the David-star deformations in the CDW state. In particular,
by reducing the deformation, the pressure diminishes the CDW
gap and increases the screening capacity of the electrons below
the gap (that is, the interband contribution to the dielectric
function). Similarly, the pressure also weakens the potential that
defines the local wavefunction, thereby increasing its extension
and the wavefunction overlap integral. Both these mechanisms
simultaneously increase t and decrease U , leading to a decrease in
the ratio U/t . The Mott-state melting occurs naturally at a critical
value of this ratio28.

NATURE OF THE TEXTURED PHASE

The NCCDW phase has been subject to numerous experimental
and theoretical investigations at ambient pressure. Previous
theoretical approaches invoked mainly phenomenological
treatments, based on sophisticated versions of the Landau-type
functional, leaving out the microscopic details29,30. However,
the main mechanism behind the creation of the textured phase
has been established to lie in the tendency of the system to
maximize the electronic gap at a given deformation amplitude
by (inter)locking the deformations at (three) commensurate wave
vectors, counteracted by the remnant part of the electrons in the
states above the gap. This leads to a microscopic mechanism for
domain formation, common to many electronic systems with
(charge- or spin-) density waves close to commensurability31.
Essentially, the discommensurations in the textured phase host
the electrons that do not fit below the gap that exists in the
commensurately ordered domains. Notably, however, the size of the
domains in 1T-TaS2 is substantial, containing several hundred TaS2

units within each layer. Therefore, long-range Coulomb forces are
expected to control the charge transfer involved in the domain size
and organization32. This important aspect was omitted in former
theoretical treatments of the NCCDW phase in 1T-TaS2.

We fully include the Coulomb aspect of this charge transfer,
when considering the formation of domains in the NCCDW phase
in 1T-TaS2. The two limiting degrees of this charge relocation leave
the domains either as a lightly (self-)doped Mott state, or fully
depleted. We compare the Coulomb energy per particle involved
in the formation of fully depleted domains, Ec, with the electronic
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Figure 3 The temperature–pressure phase diagram of 1T-TaS2. The Mott
localization is suppressed, closely accompanied by the melting of the CCDW phase
at a pressure of 0.8 GPa; the lattice structure in the latter phase is composed of
interlocking David stars. The NCCDW phase extends over the pressure range of
1–7 GPa, and may be visualized as roughly hexagonal domains suspended in an
interdomain phase, indicated in grey. The first signatures of superconductivity
appear from the NCCDW state, and remain roughly at 5 K throughout the entire
pressure range of 3–25 GPa. In the pressure range of 8–25 GPa, the system is
metallic over the investigated temperature range when above the superconducting
transition temperature. The drawings above and below the phase diagram indicate
the probable deformation patterns in the system at low temperature, as discussed in
the text. Darkly shaded parts denote the parts with the static deformation in the form
of David stars, whereas in the light-shaded areas the deformation is considerably
reduced or completely suppressed.

energy gap � in the domains. The case of Ec ⇠ � implies a
Coulomb-controlled textured phase. The alternatives, unrestricted
by the long-range Coulomb forces, relate to Ec ⌧ � and Ec � �
signifying fully depleted and slightly doped Mott phase domains,
respectively. Figure 4 shows the results of a calculation, for diVerent
domain sizes and organization in successive layers. The calculation
(see the Methods section) is carried out for a kagome patchwork
with two diVerent stacking alignments. Stacking A considers an
axial alignment of domains and interdomain triangles in successive
layers, and has been experimentally observed in 1T-TaS2 (see
Fig. 4, Stacking A). The shifted positions of the domains between
adjacent planes resemble a closely packed face-centred-cubic
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B. Sipos et al, Nature Materials 7, 960 (2008).

T. Mertelj et al.,  PRL , 147003 (2005), PRB 76, 9 (2007).

1T-TaS2

commensurate, etc., which is important for determining the
strength of the lattice interaction.

In this Letter, we use scanning tunneling microscopy and
spectroscopy to study the unidirectional CDW system
TbTe3. By taking large area scans at different bias volt-
ages, we can separate out the lattice effects from the CDW
and discuss how it has affected previous interpretations of
the CDW structure. Using a combination of real-space and
Fourier analysis, we find that the CDW is in fact fully
incommensurate. We also note two new surface effects in
this material: dimerization and a second charge ordering
with a perpendicular component to the CDW.

We performed measurements on a homemade UHV
cryogenic STM. Single crystals were grown using a self-
flux method as previously reported [13]. The samples were
cleaved between the two Te planes in <2! 10"10 Torr
vacuum and quickly lowered to the #6 K section of the
microscope, where cryopumping ensures that the surface
remains free from adsorbates. Topography was taken at
several bias voltages ($Vsample " Vtip) and 50 pA setpoint
current. Scan sizes were as large as#240! 240 !A2. While
surfaces often had large areas with no obvious surface
impurities (which might pin the CDW); flakes or other
‘‘dirt’’ every few hundred Å limited the maximum size of
our scans. Thermal compensation, hysteresis minimization
techniques, and postprocessing were used to reduce the
amount of scan distortion in the images. An example of
such a scan with bias voltage %200 mV is shown in
Fig. 1(b). We also took spectroscopic scans over smaller
areas, i.e., a dI=dV [proportional to the local density of
states (DOS)] spectrum at every point with a lock-in am-
plifier. The spectra mainly had spatial variations relating to
the lattice and CDW; thus, we show in Fig. 1(c) an aver-
aged spectrum taken in the range of&800 mV. ARPES has
shown a partially gapped FS with maximal gap of 240 mV
[14]. As expected, we see a depressed DOS inside the gap
with finite conductance at zero bias. A possible reason for
the high conductance at negative energies is that we are
also probing the filled pz orbitals of the Te atoms, where it
is easier to remove electrons than add them.

CDWs appear in STM topography; however, a different
sample bias may give different results depending on how
many of the states responsible for the CDW are integrated.
Figure 2(a) shows a (zoomed-in) scan at "800 mV and
50 pA, a voltage outside the gap which should include all
the states responsible for CDW formation. We observe the
square lattice of the surface Te layer, with a Te-Te (aver-
age) spacing of'3 !A. The atomic features visually swamp
any CDW modulation. One possible explanation for its
relatively small amplitude is that the extended nature of
the pz orbitals causes the tip to be further away from where
the CDW wave functions exist. Since the CDW wave
function decays exponentially out of the plane [15], its
contribution to the topography is expected to be small. The
second is that it is energetically unfavorable to have large
charge inhomogeneities due to Coulomb repulsion, and

thus when looking at quantities that are closer to represent-
ing total charge, i.e., large bias voltages, the CDW ampli-
tude appears small.

We also see dimerization, with pairs of atoms connected
in an upper-left, lower-right direction. This indicates an-
other broken symmetry, as it chooses a direction 45( (as
opposed to "45() to the CDW. Although the Te net is
expected to be unstable against a 3.1 Å bond length [16],
this effect has not been directly observed by XRD.
However, it is consistent with the bimodal bond length
distribution found by the atomic pair distribution function
(PDF) analysis of powder x-ray data [17]. We do not see a
complex pattern of oligimers as proposed in the works of
Malliakas et al. [4], since the simple two-atom dimers have
a repeating pattern of long and short bonds within a row.
This is also suggested in Fig. 3(b) (red line) by a lack of
lower frequency components in the Fourier transform.
Although what we see may be a surface effect, this should
prompt a reexamination of the RTe3 crystal structure.

To probe the sample more closely, we decrease the bias
voltage to "200 mV (<"max), which causes the tip to
move 3 Å closer to the sample. Because of the partially
gapped FS, we still expect to see states responsible for
CDW formation at these lower energies. The CDW signal
is slightly stronger; however, now we note a new, larger
square lattice rotated 45(. This new periodicity has three
potential causes: Dimerization (as noted above), the block
layer (as mentioned earlier), and stacking of the pair of Te
layers deeper in the sample, which results in two crystallo-

FIG. 2 (color). Zoomed-in view of topographic scans with
50 pA setpoint current. All units in Å. (a) Topography at
"800 mV, (b) "200 mV. Right half shows locations of the
surface Te atoms. (c) %200 mV.
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k≠0 e-p coupling

FS nesting?
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TbTe3
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Note that these predicted intensities are still quite small, 
so that it is clear that this work would not be possible 
without the large gap in RTe3. As shown in ref. 20, the 
evolution of the shadow bands can be followed from 
kx=0.3a* up to 0.45a*, making their assignment 
unambiguous.   

 
The real shape of the FS can be traced from the 

crossing position of these main and shadow bands. It is 
more complicated than in Fig. 17, because of the 
additional interactions between px and pz and with the 
folded FS. The interaction between px and pz is visible in 
Fig. 23a, it opens a gap of about 2Vpx-pz≈0.3eV at their 
crossing, which replaces the linear dispersions near Ef by 
a shallow parabola. This is in good agreement with the 
band calculation (see for example Fig. 2, where 2Vpx-

pz≈0.2eV). Taking this interaction into account, the FS 
evolves from the 2D TB FS of Fig. 4a to the square and 
outer sheets of Fig. 4b (for clarity, a large Vpx-pz≈0.3eV 
is used in this figure). The 3D FS is obtained by folding 
the 2D with respect to the 3D BZ, as sketched on Fig. 4c. 
The main and folded bands also interact. This can be 
seen in Fig. 2b, where a gap 2V3D≈0.18eV opens at their 
crossing, which takes place at –0.8eV. This is a similar 
strength as for the CDW interaction and, indeed, in Fig. 
23, folded bands appear with similar intensity as the 
CDW shadow bands. After interaction (Fig. 24a), the 
outer part breaks into a small oval pocket near the zone 
boundary and a larger squared feature. The oval pocket 
is clearly present in the experimental data (see Fig. 24c). 
The periodicity is the one of the 3D BZ, but the 
distribution of the spectral weight is reminiscent of the 
2D FS.20 Once again, we take the size of the markers 
proportional to the spectral weight.  

In Fig. 24, we proceed to the full reconstruction of 

the FS in the CDW state. This is similar to Fig. 17 but 
we now use the real FS of Fig. 24a instead of that of Fig. 
4a. The main effect is a gapping of a large stripe along kz 
for about –0.25a*<kx<0.25a*. The remaining fraction of 
the square is "closed" at the bottom by the shadow FS. 
The structure of the top of the square is more 
complicated. In the case of CeTe3 (Fig. 24c), it clearly 
does not close but smoothly connects to the shadow FS. 
However, this shape sensitively depends on the relative 
strength of Vpx-pz and Vq, and also probably on the 
bilayer splitting. For YTe3 (Fig. 5), the top part of the 
square is clearly closed. The fact that one can sort out 
these details is mainly the consequence of much 
improved resolution and data rate in modern ARPES. To 
close the other side of the pocket, along the outer part, 
the mechanism is similar to the one band case of Fig. 17.  

One may wonder if the interaction at qcdw is 
equivalent to that at (c*-qcdw), as we have seen that it is 
only when the weak folded FS is considered that qcdw 
becomes meaningful. If it is, we should observe in our 
data a gap at the crossing between the folded and CDW 
shadow bands. On the contrary, it seems in Fig. 23 that 
these two bands cross without interacting. In Fig. 24b, 
we calculate the FS in two extreme cases, with 
V(qcdw)=0 (kx>0) and V(qcdw)= V(c*-qcdw) (kx<0). The 
crossing between folded and shadow FS is indicated by 
black arrows and this region is quite different in the two 
cases. The comparison with the experimental map of Fig. 
24c clearly favors the first case.  

This is a particularity of the CDW in this system, 
which is dominated by the in-plane coupling and is in 
fact essentially 2D. If not properly recognized, this could 
mimic a deviation from a sinusoidal distortion. In ref. 16, 
it was proposed that the CDW is commensurate within 
discommensurate domains, in order to create patterns of 

 
Fig. 24 : (a) 3D FS including interaction between px and pz and between main and folded bands (bilayer splitting is omitted). The green square is
the 3D BZ. The size of the markers is proportional to the spectral weight. The red arrows correspond to CDW wave vectors (c*-qcdw) and qcdw. (b)
Red markers : weight of the reconstructed FS calculated within the TB model with V(qcdw)=0 at kx>0, and V(qcdw)= V(c*-qcdw) at kx<0. Black
contours are guide for the eyes of square and outer parts, dotted contours are for folded parts. (c) Zoom on the FS pockets measured in CeTe3 with
a photon energy of 55eV.  

no AF order



“Cosmic Quench” experiments
“Cosmology in L4He”, Zurek (1985)

Optical experiments :
• offer high temporal resolution 

(easily to 7 fs)

• flexibility in probe wavelengths 
(THz - UV)

• we can probe the symmetry of 
different states 

Other experiments :
• TR ARPES : Martin Wolf’s group, Alessandra Lanzara’s group, 

Z.X. Shen, Uwe Bovensiepen’s group, Luca Perfetti’s group…

• TRED : Jure Demsar &co., Dwayne Miller’s group

• TR XRD,  TR XPS…

Yusupov, R. et al. Nat Phys 
6, 681–684 (2010).



The response of the probe in all-optical 
experiments

k

l

Destruction
pulse

P

Analyser Sample

probe

Pump

CRS and PIA probe processes can be distinguished by polarisation selection rules 

PIA

ℏωP 
ℏωpr 

R

1. Kabanov, V., Demsar, J., Podobnik, B. & Mihailovic, D.  Phys Rev B 59, 1497–1506 (1999). 
2.  Dvorsek, D. et al.  Phys Rev B 66, 020510 (2002).
3. Mihailovic, D., et al,., J Phys-Condens Mat 25, 404206 (2013). 

1. Photoinduced absorption (PIA): 

The polarisation selection 
rules are determined by 
the dielectric tensor

|0 >
|1 >

|2 >

ℏω0

Rℏωpr 
ℏωP ℏωa

1. Garrett, G., Albrecht, T., WHITAKER, J. & Merlin, R.  Phys Rev Lett 77, 3661–3664 (1996). 
2. Stevens, T. E., Kuhl, J. & Merlin, R.  Phys Rev B 65, 144304 (2002). 

The polarisation 
selection rules are 
governed by the Raman 
tensor χkl

2. Coherent Raman-like (CRS) process:

|0 >
|1 >

|2 >

Toda, Y. et al. PRB 90, 094513 (2014)



3.0 1.02.0 3.01.0 2.0

3.0

1.0
2.0

3.0

1.0
2.0

10-4

10-4

1.02.0 1.0 2.0

2.0

1.0

2.0

1.0

b(Bi-O)

a
10-4

10-4

 θ ∆R(θ)/R

10 5.0 5.0 10

10

5.0

5.0

10

10-4

3.0
0.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

T=270K

0.0
2.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

b(Bi-O)

a

b(Bi-O)

a

T=90K

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

0.0
8.0

Cu-O

Cu-O

Cu-O

T=10K
∆R/R

10-4 10-4 10-4−1.0 8.5 −1.0 2.5 −1.0 3.0
(a) (b) (c)

(d) (e) (f)Cu-O

Cu-O
10-4

1.0

10-4

10-42.0

2.0

1.02.0

2.0

1.0

1.0
10-4

10

5.0

5.0
10

15

15

5.
0

5.
0

10 10 1515

10-4

3.0 1.
0

2.0 3.01.0 2.0

3.0

1.0
2.0

3.0

1.0
2.0

10-4

b(Bi-O)

a
Cu-O

Cu-O
10-4

3.0
0.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

T=260K

0.0
2.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

b(Bi-O)

a

b(Bi-O)

a

T=90K

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

0.0
10.0

−1.0 15.0 −1.0 2.9 −1.0 3.0
T=10K

Cu-O

Cu-O

Cu-O

∆R/R
10-4 10-4 10-4

(g) (h) (i)

(j) (k) (l)

∆
R(
0)
/R

  (
10

-4
)
θ(

d
e

g
.)

∆
R(
0)
/R

  (
10

-4
)
θ(

d
e

g
.)

∆R(θ)/R

∆R(θ)/R
∆R(θ) ∆R

◦

Tc, T ∗

θ ≃ 45◦

T ∗

θ

T
∆RB1g/R ∆RB2g/R ∆RA1g/R

∆RB1g ∆RB2g

∆RB1g Tc

Tc ∆RB2g

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

2.5
Te

m
pe

ra
tu

re
 (K

)

Delay (ps)

Te
m

pe
ra

tu
re

 (K
)

Delay (ps)

UD 
B1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−2.0

9.5
OD 
A1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

1.5
OD 
B1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

0.6
OD 
B2g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.0

13

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

1.6
UD 
B2g 

(d) (e)

(a) (b)

(f)

(c)

Delay (ps)

UD 
A1g 

T 1g 2g 1g

∆R

∆R/R × 104

0 50 100 150 200 250
-2

0

2

4

6

8

10

0 50 100 150 200 250
0
2
4
6
8

10
12
14

 A1g

 B1g (×7)
 B2g (×14)

 

 

A
 (1

0-4
)

a) OD

b) UD

 A1g

 B1g (×6)
 B2g (×9)

 

 

A
 (1

0-4
)

T (K)

-2 -1 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

B1g260K

90K

c) OD

∆
R

/R
 (1

0-4
)

10K

10K

90K
260K B2g

-2 -1 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
d) UD

Delay (ps)

∆
R

/R
 (1

0-4
)

10K

90K

260K

10K
90K
260K

B1g

B2g

T 1g 1g 2g

T ∗ A1g

Tc

T

∆RB1g ∆RA1g

Tc T
∆RB2g

2 2 2 8+δ

2 2 2 8+δ

1g 1g

1g 2g

Tc

Tc

pump

∆f

F (t) ∝ P (t) P (t)

πR

D4h

1g 2g

1g 2g

2 1g

A1g

B2g

B1g

M

Γ

X

x
y

(a)

θ

Lens

HWP

Pump

Probe

DM

Sample

b(Bi-O) a
Cu-O

(b)

λ
λ

θ
k

2 2 2 8+δ

2 2 2 8+δ

1g 1g

1g 2g

Tc

Tc

pump

∆f

F (t) ∝ P (t) P (t)

πR

D4h

1g 2g

1g 2g

2 1g

A1g

B2g

B1g

M

Γ

X

x
y

(a)

θ

Lens

HWP

Pump

Probe

DM

Sample

b(Bi-O) a
Cu-O

(b)

λ
λ

θ
k

3.0 1.02.0 3.01.0 2.0

3.0

1.0
2.0

3.0

1.0
2.0

10-4

10-4

1.02.0 1.0 2.0

2.0

1.0

2.0

1.0

b(Bi-O)

a
10-4

10-4

 θ ∆R(θ)/R

10 5.0 5.0 10

10

5.0

5.0

10

10-4

3.0
0.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

T=270K

0.0
2.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

b(Bi-O)

a

b(Bi-O)

a

T=90K

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

0.0
8.0

Cu-O

Cu-O

Cu-O

T=10K
∆R/R

10-4 10-4 10-4−1.0 8.5 −1.0 2.5 −1.0 3.0
(a) (b) (c)

(d) (e) (f)Cu-O

Cu-O
10-4

1.0

10-4

10-42.0

2.0

1.02.0

2.0

1.0

1.0
10-4

10

5.0

5.0
10

15

15

5.
0

5.
0

10 10 1515

10-4

3.0 1.
0

2.0 3.01.0 2.0

3.0

1.0
2.0

3.0

1.0
2.0

10-4

b(Bi-O)

a
Cu-O

Cu-O
10-4

3.0
0.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

T=260K

0.0
2.0

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

b(Bi-O)

a

b(Bi-O)

a

T=90K

90

180

270

360

0

Delay (ps)
-2 0 2 4 6 8 10

0.0
10.0

−1.0 15.0 −1.0 2.9 −1.0 3.0
T=10K

Cu-O

Cu-O

Cu-O

∆R/R
10-4 10-4 10-4

(g) (h) (i)

(j) (k) (l)

∆
R(
0)
/R

  (
10

-4
)
θ(

d
e

g
.)

∆
R(
0)
/R

  (
10

-4
)
θ(

d
e

g
.)

∆R(θ)/R

∆R(θ)/R
∆R(θ) ∆R

◦

Tc, T ∗

θ ≃ 45◦

T ∗

θ

T
∆RB1g/R ∆RB2g/R ∆RA1g/R

∆RB1g ∆RB2g

∆RB1g Tc

Tc ∆RB2g

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

2.5

Te
m

pe
ra

tu
re

 (K
)

Delay (ps)

Te
m

pe
ra

tu
re

 (K
)

Delay (ps)

UD 
B1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−2.0

9.5
OD 
A1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

1.5
OD 
B1g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

0.6
OD 
B2g 

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.0

13

50

100

150

200

250

0
-2 0 2 4 6 8 10

−0.2

1.6
UD 
B2g 

(d) (e)

(a) (b)

(f)

(c)

Delay (ps)

UD 
A1g 

T 1g 2g 1g

∆R

∆R/R × 104

0 50 100 150 200 250
-2

0

2

4

6

8

10

0 50 100 150 200 250
0
2
4
6
8

10
12
14

 A1g

 B1g (×7)
 B2g (×14)

 

 

A
 (1

0-4
)

a) OD

b) UD

 A1g

 B1g (×6)
 B2g (×9)

 

 

A
 (1

0-4
)

T (K)

-2 -1 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

B1g260K

90K

c) OD

∆R
/R

 (1
0-4

)

10K

10K

90K
260K B2g

-2 -1 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
d) UD

Delay (ps)

∆R
/R

 (1
0-4

)

10K

90K

260K

10K
90K
260K

B1g

B2g

T 1g 1g 2g

T ∗ A1g

Tc

T

∆RB1g ∆RA1g

Tc T
∆RB2g

Temperature dependence of different 
symmetry components, A1g, B1g and B2g:

Pk

∆f(q) Pq
k =

∑
l R

q
klEl∆f(q)

Rq
kl = ∂ϵkl

∂f(q) ϵkl

El l

D4h

∆ϵ =
[

∆ϵA1g

∆ϵA1g

]
+

[
∆ϵB1g

−∆ϵB1g

]
+

[
∆ϵB2g

∆ϵB2g

]
.

E =
E0

(
cos θ
sin θ

)

R

∆R(θ) =
∂R

∂ϵ1

[
∆ϵ

A1g
1 + ∆ϵ

B1g
1 cos(2θ) + ∆ϵ

B2g
1 sin(2θ)

]
+

∂R

∂ϵ2

[
∆ϵ

A1g
2 + ∆ϵ

B1g
2 cos(2θ) + ∆ϵ

B2g
2 sin(2θ)

]
.

θ ϵ1 ϵ2

∆R(θ) ∝ ∆RA1g + ∆RB1g cos(2θ) + ∆RB2g sin(2θ).

∆R(θ) T

2g

π π
k 1g

π π
A1g

s

Tc ≈
Tc ≈

Epu =
λpu = Epr = λpr =

20µ
ab f =

x
y

b

∆R

<∼ 2%
∆R

∆R(t)

θ = 0 360◦

∆R(θ)
θ = 0◦

∆R(θ)

∆R(θ)

F
FSC

th = µ 2 F

Tc T ∗

T ∗ ≃

F

Tc

F

PHYSICAL REVIEW B 90, 094513 (2014)

Rotational symmetry breaking in Bi2Sr2CaCu2O8+δ probed by polarized femtosecond spectroscopy
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The quasiparticle (QP) dynamics with different symmetry is investigated in the superconducting (SC) and
normal state of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212) using optical pump-probe
experiments with different light polarizations at different doping levels. The observation of distinct selection
rules for SC excitations present in A1g and B1g symmetries, and for the pseudogap (PG) excitations present in
A1g and B2g symmetries by the probe, and absence of any dependence on the pump beam polarization leads
to the unequivocal conclusion of the existence of a spontaneous spatial symmetry breaking in the PG state not
limited to the sample surface.

DOI: 10.1103/PhysRevB.90.094513 PACS number(s): 74.25.Gz, 42.65.Dr, 74.72.−h, 78.47.jg

I. INTRODUCTION

Ultrafast pump-probe spectroscopy has been widely used
to investigate the high-Tc superconductivity from various
viewpoints [1–5]. Nonequilibrium studies give a unique insight
into quasiparticle (QP) dynamics, revealing universal two-
component QP dynamics associated with the superconducting
(SC) gap and pseudogap (PG) excitations in high-Tc materials.
The two types of excitations were characterized by distinct
relaxation times, temperature dependencies, and/or sign of
the optical signal, depending on the material, doping level,
photoexcitation intensity, and the wavelengths of light used in
the pump-probe experiments [6–10]. The dependence on the
probe photon polarization of the two-component reflectivity
dynamics has also been reported [11,12]. However, the absence
of a fundamental understanding of the optical processes
involved in pump-probe experiments so far prevented anal-
ysis of the symmetry of excitations or detailed theoretical
analysis of the excitations on a microscopic level. Here,
by performing a concise symmetry analysis of pump-probe
experiments on Bi2212 high temperature superconductors
and identifying the processes involved, we open the way
to investigations of hidden broken symmetry and local or
mesoscopic symmetry breaking in systems with competing
orders.

Generally pump-probe experiments can be described as a
two step process. In the first step, the pump pulse excitation can
be viewed as a process which can be divided into a coherent
stimulated Raman excitation [13] and an incoherent dissipative
excitation. In pseudotetragonal (D4h) symmetry, considered
appropriate for the cuprates [14], A1g and A2g as well as
B1g and B2g excitations can be coherently excited by the coher-
ent excitation process for the photon polarizations lying in the
CuO2 plane [15]. On the other hand, the dissipative excitation
cannot coherently excite nonsymmetric modes. However, an
additional possibility exists, where in the presence of a local,
dynamic, or hidden symmetry breaking nonsymmetric modes
can be excited coherently also by the totally symmetric
dissipative excitation. This allows us to probe symmetry
breaking by means of the pump-probe spectroscopy.

In the second step of the pump-probe experiment, the
transient change of reflectivity "R detected by the probe can

be described by the Raman-like process [13]. Assuming the
pseudotetragonal structure (D4h point group) for Bi2212, we
can obtain the simple form of the angle dependence of the
transient reflectivity (for details see the Supplemental Material
[16]):

"R(θ ) ∝ "RA1g
+ "RB1g

cos(2θ ) + "RB2g
sin(2θ ). (1)

Here θ is defined in Fig. 1(a), and A2g symmetry is
omitted because it does not contribute in our experimental
configuration. Thus, in principle, by measuring the angle
dependence of "R(θ ) and using Eq. (1) we can separate the T -
dependent QP dynamics associated with different symmetries
and consequently identify the states involved [17].

Previous analysis in the cuprates have indicated that the
electronic Raman scattering in the B2g symmetry probes
excitations in the nodal (π/2,π/2) direction in k space, while
the B1g scattering probes excitations in the antinodal directions
(π/2,0) and (0,π/2) [15,18–20] as shown in Fig. 1(b). An
A1g symmetry component is also present, whose origin is
still highly controversial [15]. Recent studies suggest the
presence of the PG in the nodal direction [21] implying an
s-wave symmetry, in contrast to the common assumption
of a PG with nodes, indicating that the PG symmetry is
still an open issue. Some important progress has been made
on the broken symmetry of the PG in Bi2212 and related
compounds [22–24]. A rotational broken symmetry of the
PG in YBCO and LSCO has also been reported in the THz
region very recently [25]. A detailed symmetry analysis of
optical pump-probe experiments can therefore potentially give
important new information on the symmetry, lifetime, and
temperature dependence of nodal and anti-nodal excitations in
the cuprates and other superconductors with an enhanced bulk
sensitivity with respect to the time-resolved angle-resolved
photoemission spectroscopy (ARPES) [2,4].

II. EXPERIMENT

The optical measurements were performed on freshly
cleaved slightly overdoped (OD, Tc ≈ 82 K) and underdoped
(UD, Tc ≈ 69 K) Bi2212 single crystals grown by the traveling
solvent floating zone method. For optimal signal-to noise
ratio we used a pump at Epu = 3.1 eV (λpu = 400 nm) and
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and

m̄ ≃
(a

b

)1/2
(Tc − T )1/2 for T < Tc. (7)

Evaluating f at m̄ gives

f̄ = f0 − a2(T − Tc)
2

2b
(8)

showing the lowering of the free energy by the ordering. Note that f̄ (T ) deviates from f0 quadratically,

as we found for the mean field theory of the Ising ferromagnet. This will yield a jump discontinuity in the

specific heat

c =
{

c0 T ≥ Tc

c0 + a
b
T T < Tc

, (9)

with c0 the smooth contribution coming from f0(T ).

We can gain useful insight into the transition by plotting f (m) for a uniform m for various temperatures, as

in Fig. 1. For T > Tc the free energy has a single minimum at m = 0. Below Tc two new minima at ±m̄

develop. Right at Tc the curve is very flat at the minimum (varying as m): we might expect fluctuations to

be particularly important here.

It is easy to add the coupling to a magnetic field

f (m, T , B) = f0(T ) + a(T − Tc)m
2 + 1

2
bm4 + γ (∇⃗m)2 − mB. (10)

Themagnetic field couples directly to the order parameter and is a symmetry breaking field: with themagnetic

field the full Hamiltonian is not invariant under spin inversion. Now the free energy is minimized by a non

zero m. Minimizing f again with respect to m, we find above Tc the diverging susceptibility

χ = m̄

B

∣∣∣∣
B=0

= 1

2a
(T − Tc)

−1, (11)
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Abstract. The possible domain structures which can arise in the universe in a spontaneously 
broken gauge theory are studied. It is shown that the formation of domain walls, strings or 
monopoles depends on the homotopy groups of the manifold of degenerate vacua. The 
subsequent evolution of these structures is investigated. It is argued that while theories 
generating domain walls can probably be eliminated (because of their unacceptable 
gravitational effects), a cosmic network of strings may well have been formed and may have 
had important cosmological effects. 

1. Introduction 

Gauge theories with spontaneous symmetry breaking have come to play a central role in 
elementary particle theory. Kirzhnits (1972), and Kirzhnits and Linde (1972, 1974) 
suggested that as in ferromagnets and superconductors the full symmetry may be 
restored above some critical temperature. That this actually happens in a class of 

theories where the symmetry breaking occurs through the acquisition of a vacuum 
expectation value by an elementary scalar field has been demonstrated by Weinberg 

(1974) while Jacobs (1974) and Harrington and Yildiz (1975) have examined models of 
dynamical symmetry breaking in which the role of the order parameter is played by a 
composite field operator. (See also Bernard 1974, Dolan and Jackiw 1974, Dashen eta1 

1975, and Linde 1975.) 
In the hot big-bang model, the universe must at one time have exceeded the critical 

temperature so that initially the symmetry was unbroken. It is then natural to enquire 
whether as it expands and cools it might acquire a domain structure, as in a ferromagnet 
cooled through its Curie point. Zel’dovich et a1 (1974; see also Kobzarev et a1 1974) 
have discussed this question, and in particular pointed out the important gravitational 
effects to be expected of domain walls. Everett (1974) has studied the propagation of 
waves across a domain boundary. 

The aim of this paper is to discuss the topology and scale of the possible cosmic 
structures that might arise. After reviewing the results of Weinberg and others on phase 
transitions in a simple class of models in 0 2, we discuss in 0 3 the initial formation of 

‘protodomains’ as the universe cools. The possible topological configurations are 
examined in 0 4. These include domain walls, strings and monopoles. We show that 
their occurrence is largely determined by the topology of the manifold M of degenerate 
vacuum states (specifically by its homotopy groups). (Coleman (1976) has stated the 
same result in a different context. In the case of monopoles it has been proved by Krive 
and Chudnovskii 1975.) In 0 5 we examine the later evolution of these structures. We 
show that domain walls can be of two main types with very different transmissivity, and 
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that highly reflecting walls may behave very differently from the essentially transparent 
ones considered by Zel’dovich et al(1974). In all cases however the typical scale of the 
domain structure will grow with time until it is comparable with the radius of the 
universe. Hence the argument of Zel’dovich etal, to the effect that domain walls cannot 
have persisted beyond the recombination era because their gravitational effect would 
have destroyed the isotropy of the 3 K background radiation, applies. If domain walls 
existed they must have disappeared by then. This in turn is possible only if the universe 
has a small built-in asymmetry. The exclusion of theories generating domain walls is an 
interesting example of a restriction on elementary particle theories derived from 
cosmology. 

The general conclusion is that there is a rich variety of possible topological 
structures which might have appeared in the early history of the universe. Few of these 
(monopoles excepted) are likely to be stable enough to have survived to the present, but 
they may nevertheless be of importance in understanding the history of the universe, for 
example the evolution of galaxies. The conclusions are summarized in more detail in 
§ 6. 

2. The phase transition 

Although our discussion will be quite general, for illustrative purposes it is convenient 
to have a specific example in mind. Let us consider an N-component real scalar field 4 
with a Lagrangian invariant under the orthogonal group O(N),  and coupled in the usual 
way to$N(N- 1) vector fields represented by an antisymmetricmatrix B,. We can take 

The coupling constants g and e are not necessarily related, but we shall assume that they 
are of a similar order of magnitude (and both small). 

At zero temperature the O(N)  symmetry here is spontaneously broken to O(N-  l), 
with 4 acquiring a vacuum expectation of order q. In the tree approximation, 

(4>* = q2 (2) 

so that the manifold of degenerate vacua is an ( N -  1) sphere S N - ’ .  
Let us recall the more general situation. In a model with symmetry group G, the 

vacuum expectation value (4) will be restricted to lie on some orbit of G. If H is the 
isotropy subgroup of G at one point (+), i.e. the subgroup of transformations leaving 
(4) unaltered, then the orbit may be identified with the coset space M =  G/H. 
Physically H is the subgroup of unbroken symmetries, and M is the manifold of 
degenerate vacua. As we shall see, the topological properties of M (specifically its 
homotopy groups) largely determine the geometry of possible domain structures. 

At a finite temperature T the expectation value of + in a thermal equilibrium state 
must be found by minimizing the free energy, or equivalently the temperature- 
dependent effective potential. The leading temperature dependence at high T and 

F = ↵ 2 + � 4 +H ↵ = ↵0(T � Tc)
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Doesn’t work very well!
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Figure 3: Recovery of the order parameter in depth and
time for FD = 18µJ/cm2 . Blue surface is a plot of√

1− T (t, x)/Tc i.e. what equilibrium value of |ψ| for a given
temperature would be, green surface is a calculated value of
|ψ|. At the begining surfaces are well separated and com-
pletely merge after 50 ps.

sate nucleation and growth occurs and a quasiequilibrium
regime when the condensate is thermalized with the sur-
roundings and ψ more or less adiabatically follows the
evolution of the lattice temperature.

To analyze the trajectory through the transition quan-
titatively we simulate non-equilibrium evolution of the
system in the framework of TDGL theory where in
the absence of an external field, the dimensionless one-
component order parameter ψ(t) is described by the fol-
lowing equation[30]:

∂ψ

∂t
= αr(t, z)ψ − ψ|ψ|2 +∇2ψ + η, (1)

where temporal and spatial coordinates are measured in
units of τGL and correlation length ξ, respectively, and
αr(t, z) = (1 − Te(t, z)/Tc) (see below). The relation
between the calculated trajectory of the OP and ∆R/R
is given by a linear function phenomenologically derived
in [24].

The most general formulation of the problem implies
description of both destruction and recovery of the super-
conducting condensate in the framework of the TDGL
model. Within this approach the initial state of the
system is characterized by equilibrium OP value ψ(t =
0) = 1. The destruction of the system is driven by
αr(t, z) = (1−Te(t, z)/Tc), where Te represents the solu-
tion of the three-temperature (3TM) model (see the de-
tails about the model in [24]). According to this model,
the electronic temperature Te first increases, and then
rapidly relaxes to the lattice temperature TL. Our cal-
culations of the OP demonstrate that the recovery of the
superconducting state is not temperature dominated (see
Fig. 3).

The results of the response calculations are presented
in Fig. 4a). The fit is sufficientely good only for a
single curve corresponding to F = 24µJ/cm2, implying

Figure 4: a) The trajectories of As as a function of tD−P for
different D pulse fluences FD. The vertical scales are nor-
malized to the equilibrium ψ0 in the absence of the destruc-
tion pulse. The lines are the fitted trajectories of ψ from the
TDGL theory taking into account the recovery process. b)
calculated response for solitonic solution, FD = 18µJ/cm2

and τGL is set to 40 fs. c) fluence dependence of the fit pa-
rameter κ (see text) in the units of order parameter modulus
value at λ depth.

poor agreement of the theory with experiment. The rea-
son for disagreement lies in the limited applicability of
the TDGL model to the destruction of the condensate:
within this model the condensate is never suppressed
completely, which contradicts to previously employed
model of the destruction of the condensate [10]. Another
possibility is that the reminent condensate strongly de-
pends on the trajectory of the electronic temperature,
which is known to be poorly determined in the nonequi-
librium regime [31]. As the next approximation, we solve
Eq. (1) using the initial conditions assuming that the
superconfucting state is already destroyed:

ψ(0, z)=

{
0 ,F(z) > FT ;

(1− F
FT

e−z/λ)
√
1− T (0, z)/Tc ,F(z) < FT .

In this case the recovery of the system is completely
determined by the propagation of a solitonic solution for
ψ towards the surface, as it is shown in Fig. 4b). This
approach has only one free fit parameter τGL defining
the velocity of the soliton vs [13]. Setting the Ginzburg-
Landau time to τGL ∼ 50 fs we calculate that the soliton
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Figure 5: The trajectories of As as a function of tD−P for dif-
ferent D pulse fluences FD. The vertical scales are normalized
to the equilibrium ψ0 in the absence of the destruction pulse.
The lines are the fitted trajectories of ψ from the TDGL the-
ory taking into account the fluctuations of the OP.

reaches the surface in a reasonable time ∼ 25 ps, but the
predicted ψ has poor agreement with the experimental
As as shown in Fig. 4b).

These initial conditions so far do not take into account
fluctuations of the OP. In a non-linear system such as
the TDGL equations, fluctuations are expected to have a
very important role in the system evolution, particularly
in initiating the recovery of the S state. Indeed, a number
of experiments indicate the presence of fluctuations above
Tc in LSCO [32, 33]. The estimation for the amplitude
of fluctuating OP has been given in [14]. According to
our numerical estimations, it has approximately linear
dependence of depth. Therefore, we take a linear term
ψ(t = 0) = κz to replace ψ(t = 0) = 0 for F(z) > FT

to represent the fluctuations responsible for the initiation
of condensation, where κ is a fit parameter dependent on
fluence (see Fig. 4c).

The calculated response using these initial conditions
is shown in Fig. 5). The model appears to be in good
agreement with the experimental data for all times, ex-
cept for region of the kink around 10−20ps. The fit gives
τGL ∼ 1.1 ps as a fit parameter common for all F (the
other being κ). With this value of τGL, the timescale
of soliton propagation is larger than the maximum mea-
sured delay and can thus be neglected.

To conclude, the new 3-pulse technique in combination
with modeling based on TDGL equations gives us new in-
sight into the importance of fluctuations in initiating the
growth of the condensate from the normal phase. The
newly derived relation between the transient reflectivity
and the OP, which is applicable in 3-pulse experiments
as well as in standard P-pr experiments allows us to
measure the system trajectory undergoing a highly non-

equilibrium transition in a superconductor for the first
time. Perhaps surprisingly, macroscopic phenomenolog-
ical modeling using TDGL equations can reproduce the
measured trajectories quite well, giving τGL = 1.1 ps ir-
respective of laser fluence. The role of fluctuations in
initiating the recovery of the condensate is deemed es-
sential to obtain a good fit to the data. Finally, we note
that intrinsic topological defect dynamics has been ob-
served recentely in charge density wave systems (CDWs)
[34], suggesting that topological defect dynamics in su-
perconductors and CDWs occur on similar timescales.

We wish to acknowledge the useful discussion with
T.W. Kibble regarding the importance of a variable
quench rate experiment.
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Kibble-Zurek mechanism: Evidence for vortex 
formation and annihilation on 10 ps timescale
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Mihailovic et al., J Phys-Condens Mat 25, 404206 (2013).

Regions are causally unconnected and evolve 
independently after the quench which causes the 
formation of topological defects.

Laser spot size:
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Coherence length:
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Vortices created in the quench 
annihilate on a timescale of 10-30 ps

Experiment Theory calculation
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D. Mihailovic, T. Mertelj, V. V. Kabanov, and S. Brazovskii, J Phys-Condens Mat 25, 404206 (2013).



TbTe3

• The tritellurides are layered, strongly 2-
dimensional metals with an orthorhombic 
(pseudo-tetragonal) crystal structure 
Cmca (D2h)

• They exhibit a purely electronically driven 
2nd order incommensurate CDW 
transition at Tc1 = 230~330K

• An AFM state exists at low TN,  some 
compounds exhibit another transition at 
low Tc2.

• A Superconducting transition exists with 
Tc = 3.5 K under a pressure of 75 kbar.

Norling and Steinfink, Inorg.Chem. 1966

DiMasi ’94,’95, Fisher ’05,’08

Yusupov, R. V., Mertelj, T., Chu, J. H., Fisher, I. R. & Mihailovic, D. Single-Particle and     
Collective Mode Couplings Associated with 1-and 2-Directional Electronic Ordering in 
Metallic RTe3 (R=Ho,Dy,Tb). 101, 246402 (2008).



The energy of the system can be described in terms of a time-dependent Ginzburg-Landau functional✝:
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FIG. 3: a) FFT power spectra of the data in Fig. 1c) as
a function of �t12 recorded at 100 fs intervals. Note the
non-periodic fluctuations of intensity at around the transi-
tion (1.5 ps) and the asymmetric space-time lineshapes near
�t12 � 3.5 ps as the Higgs wave reaches the surface (white
arrows). b) the intensity of the AM at long times, on three
di⇥erent spots on the sample. The lines are fits to the data
using bi-molecular wall-antiwall annihilation kinetics. c) The
calculated �R/R based on the homogeneous solution of Eq.
2. d) A(z, t) as a function of depth z and �t12. Note the
ripples in the space-time texture caused by the annihilation
event at �3.5 ps. The wave reaches the surface around 6
ps. e) the calculated response integrated over z. Note the
predicted distortion due to the Higgs wave, indicated by the
white arrows. The red arrows point to the critical slowing
down at the critical time of the transition tc.

ground state with |A| = 1. Immediately after the D
pulse, 1�⇤ < 0 and the double well potential disappears
in favor of a single energy minimum at A = 0. As 1� ⇤
increases and becomes positive, nonzero minima emerge
at ±Amin = ±(1�⇤)1/2, and start to attract the system,
which is soon trapped in one of them, and the symmetry
is broken again. With many preceding oscillations, the
final ground state is ergodically uncorrelated with the
initial one, hence the formation of domains. From Eq.
[1], the equation of motion can then be written as:

1
 2

0

✏2

✏t2
A +

�

 0

✏

✏t
A� (1� ⇤)A + A3 � ⌃2

✏2

✏z2
A = 0 (2)

Here  0 is the angular frequency of the bare (2kF )
phonon mode responsible for the CDW formation; the
second term describes its damping � ⇤ �⇧AM/⇧AM .

Using our experimental values for �QP , ⇧AM =
 ̃0/2⌥ = 2.18 THz and linewidth �⇧AM = 0.2 THz,
there are no free parameters and we can now compute
A(t, z). The calculated reflectivity response detected
by the probe is given by the di⌅erence between the re-
sponse with and without the P pulse �R(t, �t12) ⌥�⇤
0 [A2

D(t, z) � A2
DP (t, z,�t12)]e�z/�dz. A2

DP (t, z,�t12)
is calculated replacing ⇤ ⇧ ⇤P (t) = ⇤(0) exp(�t/�sp) +

⇤⇥(t� t12)exp[�(t� t12)]/�sp) and using the experimen-
tal value of ⇤ = 0.1, where ⇤ is the P pulse intensity
relative to the D pulse and ⇥(t� t12) is a unit step func-
tion (see SI for details).

In Fig. 3c) we show the FFT power spectra of
�R(t, �t12) calculated in the homogeneous regime (with
no spatial derivative in Eq.2). The main features of our
data in Fig. 3a) are already present: Oscillations of A(t)
are clearly visible at short times, as well as the hallmark
of the transition itself, namely the critical slowing of the
AM oscillations close to the critical point tc ⌃ 1.5 ps.
The calculation also reproduces the softening of the AM
for �t12 < 2 ps. The aperiodic fluctuations of the OP
near 1.5 ps pinpoint the exact critical time of the tran-
sition tc (the bifurcation point) when topological defects
are formed. A notable discrepancy with the data in Fig.
3a) is evident however for �t12 > 2ps. The calculated
AM spectra correctly predict the asymmetry in frequency
domain, but do not predict the strongly asymmety of
the AM spectrum in time domain, i.e. the diagonally
distorted blobs, particularly visible around 3.5 ps. We
will show that this asymmetry is caused by OP (Higgs)
waves which are emitted upon annihilation of topological
defects.

The decaying light intensity with depth causes domains
to form parallel to the surface, which can be taken into
account by including the spatial derivative term in Eq.
[2] and replacing ⇤(t) with a time- and space- depen-
dent function ⇤⇥(t, z) = ⇤(t) exp(�z/⌅) where ⌅=20 nm
is the light absorption depth of TbTe3 at 800 nm. Using
the experimental coherence length ⌃ = 1.2 nm [12] and
⌅ = 20 nm, the calculated OP as a function of depth z
and time �t12 is shown in Figure 3 d). The blue and or-
ange coloured regions correspond to layers of di⌅erent do-
mains, approximately 10-20 nm thick, separated by topo-
logical defects (green). The calculation for TbTe3 param-
eters clearly shows a domain-wall annihilation event at
�t12 ⌃ 4 ps emitting wave-like spatio-temporal ripples of
A(t, z) (Higgs waves), which reach the surface at �t ⌅ 5
ps. These ripples cause a deformation in the measured
spatio-temporal spectral profiles, giving diagonal blobs
at 5 ⌅ 6 ps in the depth-integrated spectra in Fig. 3e).
These are remarkably similar to the diagonal blobs ob-
served in the experimental data in Fig. 3a) at 3.2 ps
and represents a unique detection of Higgs bosons emit-
ted upon the annihilation of topological defects. (More
Higgs wave dynamics is shown in accompanying movies.)

The slow response dynamics of the AM intensity
for �t12 > 6 ps, arising primarily from incoherent
topological defect annihilation can be modeled using
intrinsic wall-antiwall recombination. The magnitude
of the AM response is proportional to the amount
of ordered volume, so �R(�t12)/R = (�R/R)0 [1 �
f(�t12)]cos ( AM t), where for bi-particle recombination,
the volume fraction occupied by the domain walls is
f(�t12) ⌥ 1/(1 + ⇥�t12). Fitting f(t) to the data in

where instead of the usual temperature dependence (T - Tc), the first term is time-dependent:

The equation of motion is obtained via the Euler-Lagrange theorem :

✝ Phase fluctuations are assumed to be slow. 

F = ↵ 2 + � 4 +H 

“The quench process”

↵ = [1� Te(t, r)

Tc
]

 (t) = A(t)ei�(t)The order parameter, 

Serguei Brazovskii, 2010

Yusupov, R. et al. Coherent dynamics of macroscopic electronic 
order through a symmetry breaking transition.  
Nat Phys 6, 681–684 (2010).

The system trajectory:  TDGL theory for a CDW 
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Further evidence that heating is not responsible for the long time dynamics comes from ex-
amination of the AM frequency and linewidth behaviour of DyTe3, 2H-TaSe2 and K0.3MoO3 at
long times which show very different behaviour at long times, reflecting the different domain
wall pinning characteristics. Domain wall pinning depends very strongly on defects and imper-
fections, and is very dependent on microscopic sample quality, as shown in Fig. 3b) of the main
text.
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Figure 3: a) The AM frequency ⇤AM(T ). We see that while ⇤ varies strongly with temperature,
it remains between 2.13 and 2.16 THz in the time window 7 ps< �t12 < 95 ps, which corre-
sponds to an effective temperature TAM between 94 and 72 K. b) The measured QP lifetime as
a function of temperature.

The optical response function.
To obtain the optical response, we can expand the dielectric constant near CDW phase transition
in powers of the order parameter:

� = �0 + c2|�|2 = �0 + c2A
2 (4)

Here �0 is the dielectric constant of the high temperature symmetric phase, c2 is a real constant.
This immediately leads to the response function

�R(t, �t12) =

�
⌅R

⌅�

⇥
�� ⇥

⇤
[A2

DP (t, r, �t12)� A2
D(t, r)]e�z/�d3r. (5)

The integration takes into account the inhomogeneity arising mainly from the finite optical
penetration depth ⇥ of the probe (p) pulses. For our geometry, the dominant effect is the depth
profile, leading to the expression for �R(t, �t12) given in the main text.
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FIG. 3: a) FFT power spectra of the data in Fig. 1c) as
a function of �t12 recorded at 100 fs intervals. Note the
non-periodic fluctuations of intensity at around the transi-
tion (1.5 ps) and the asymmetric space-time lineshapes near
�t12 � 3.5 ps as the Higgs wave reaches the surface (white
arrows). b) the intensity of the AM at long times, on three
di⇥erent spots on the sample. The lines are fits to the data
using bi-molecular wall-antiwall annihilation kinetics. c) The
calculated �R/R based on the homogeneous solution of Eq.
2. d) A(z, t) as a function of depth z and �t12. Note the
ripples in the space-time texture caused by the annihilation
event at �3.5 ps. The wave reaches the surface around 6
ps. e) the calculated response integrated over z. Note the
predicted distortion due to the Higgs wave, indicated by the
white arrows. The red arrows point to the critical slowing
down at the critical time of the transition tc.

ground state with |A| = 1. Immediately after the D
pulse, 1�⇤ < 0 and the double well potential disappears
in favor of a single energy minimum at A = 0. As 1� ⇤
increases and becomes positive, nonzero minima emerge
at ±Amin = ±(1�⇤)1/2, and start to attract the system,
which is soon trapped in one of them, and the symmetry
is broken again. With many preceding oscillations, the
final ground state is ergodically uncorrelated with the
initial one, hence the formation of domains. From Eq.
[1], the equation of motion can then be written as:
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Here  0 is the angular frequency of the bare (2kF )
phonon mode responsible for the CDW formation; the
second term describes its damping � ⇤ �⇧AM/⇧AM .

Using our experimental values for �QP , ⇧AM =
 ̃0/2⌥ = 2.18 THz and linewidth �⇧AM = 0.2 THz,
there are no free parameters and we can now compute
A(t, z). The calculated reflectivity response detected
by the probe is given by the di⌅erence between the re-
sponse with and without the P pulse �R(t, �t12) ⌥�⇤
0 [A2

D(t, z) � A2
DP (t, z,�t12)]e�z/�dz. A2

DP (t, z,�t12)
is calculated replacing ⇤ ⇧ ⇤P (t) = ⇤(0) exp(�t/�sp) +

⇤⇥(t� t12)exp[�(t� t12)]/�sp) and using the experimen-
tal value of ⇤ = 0.1, where ⇤ is the P pulse intensity
relative to the D pulse and ⇥(t� t12) is a unit step func-
tion (see SI for details).

In Fig. 3c) we show the FFT power spectra of
�R(t, �t12) calculated in the homogeneous regime (with
no spatial derivative in Eq.2). The main features of our
data in Fig. 3a) are already present: Oscillations of A(t)
are clearly visible at short times, as well as the hallmark
of the transition itself, namely the critical slowing of the
AM oscillations close to the critical point tc ⌃ 1.5 ps.
The calculation also reproduces the softening of the AM
for �t12 < 2 ps. The aperiodic fluctuations of the OP
near 1.5 ps pinpoint the exact critical time of the tran-
sition tc (the bifurcation point) when topological defects
are formed. A notable discrepancy with the data in Fig.
3a) is evident however for �t12 > 2ps. The calculated
AM spectra correctly predict the asymmetry in frequency
domain, but do not predict the strongly asymmety of
the AM spectrum in time domain, i.e. the diagonally
distorted blobs, particularly visible around 3.5 ps. We
will show that this asymmetry is caused by OP (Higgs)
waves which are emitted upon annihilation of topological
defects.

The decaying light intensity with depth causes domains
to form parallel to the surface, which can be taken into
account by including the spatial derivative term in Eq.
[2] and replacing ⇤(t) with a time- and space- depen-
dent function ⇤⇥(t, z) = ⇤(t) exp(�z/⌅) where ⌅=20 nm
is the light absorption depth of TbTe3 at 800 nm. Using
the experimental coherence length ⌃ = 1.2 nm [12] and
⌅ = 20 nm, the calculated OP as a function of depth z
and time �t12 is shown in Figure 3 d). The blue and or-
ange coloured regions correspond to layers of di⌅erent do-
mains, approximately 10-20 nm thick, separated by topo-
logical defects (green). The calculation for TbTe3 param-
eters clearly shows a domain-wall annihilation event at
�t12 ⌃ 4 ps emitting wave-like spatio-temporal ripples of
A(t, z) (Higgs waves), which reach the surface at �t ⌅ 5
ps. These ripples cause a deformation in the measured
spatio-temporal spectral profiles, giving diagonal blobs
at 5 ⌅ 6 ps in the depth-integrated spectra in Fig. 3e).
These are remarkably similar to the diagonal blobs ob-
served in the experimental data in Fig. 3a) at 3.2 ps
and represents a unique detection of Higgs bosons emit-
ted upon the annihilation of topological defects. (More
Higgs wave dynamics is shown in accompanying movies.)

The slow response dynamics of the AM intensity
for �t12 > 6 ps, arising primarily from incoherent
topological defect annihilation can be modeled using
intrinsic wall-antiwall recombination. The magnitude
of the AM response is proportional to the amount
of ordered volume, so �R(�t12)/R = (�R/R)0 [1 �
f(�t12)]cos ( AM t), where for bi-particle recombination,
the volume fraction occupied by the domain walls is
f(�t12) ⌥ 1/(1 + ⇥�t12). Fitting f(t) to the data in
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The competing states of 1T-TaS2 
under equilibrium conditions

domain walls

of corner-sharing triangles. This result is different from the
model proposed by Yamamoto,25 who proposed the honey-
comb lattice as domain structure. However, our result is in
excellent agreement with the theory of Nakanishi and
Shiba,17 who indeed found a pattern of corner-sharing hexa-
gons as the domain structure of the NC phase ~Fig. 3 in Ref.
17!.
The relation between the structures of different layers is

determined by the centering translations (Eu0,0, 13 ,6 2
3 ,6 1

3 ),
or equivalently by the commensurate components of the
modulation wave vectors. The phase shifts of the modulation
in neighboring layers therefore are 6(2 1

3 , 13 ). The effect in
the structure is that the centers of the domains in neighboring
layers are shifted such that the centers of the domains in one
layer are on top of the centers of one half of the triangular

regions forming the domain walls ~Fig. 8!. The domains thus
form a pattern similar to a hexagonal close packed lattice.

C. Correlation between tantalum and sulfur modulations

The modulation of the S atom is much smaller than that of
Ta. It has contributions in all three directions, but the largest
amplitudes are along c ~Table V!. The uz modulation of S ~ 23 ,
1
3 , 0.086! at the position ~ 23 , 13 , 0.086! is drawn as a function
of (t1 ,t2) in Fig. 10. The threefold site symmetry of the S
atom is clearly visible. The z modulation can be character-
ized by large plateaus with positive displacement (uz
50.106 Å) and slightly smaller plateaus with negative dis-
placement (uz520.124 Å). The boundaries between the
positive and negative regions are rather sharp, and a block
wave is a reasonable approximation for this function.

FIG. 8. ~a! Ta atoms in the layer z50 in a region of 1003100 unit cells. Only atoms belonging to complete clusters are plotted as dots.
The regions with domain-wall-like structure are left blank. The modulation in x ,y direction for the Ta atoms is exaggerated five times. The
origin (t1 ,t2)5(0,0) is the lower left point. ~b! The same as ~a! for the Ta atoms in the layer z5 1

3 . ~c! Ta atoms in the layer z50. An
enlargement of ~a! is shown, now with the atoms in the domain walls plotted as heavy dots.
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~0,0,0!, Ta ~1,0,0!, and Ta ~1,1,0! ~Fig. 7!. Extending the
comparison of t plots, then shows that the uz modulation of
the S has a maximum for those phase values where the dis-
tances between the three underlying Ta atoms are a mini-
mum and vice versa ~Figs. 3, 4, 5, and 10!. It is thus found
that there is a strong correlation between the modulations of
Ta and S, such that sulfur atoms are pushed out of the layer
when the coordinating tantalum atoms move towards each
other, and the other way around. Further analysis shows this
to be a general property of the modulation, implying that all
sulfur atoms above a 13 cluster move outwards, and that
sulfur atoms between 13 clusters and within the domain
walls move towards the center of the layer. This result is in
accordance with a similar finding for the commensurate
superstructure.7
The hcp stacking of layers is now explained by the sulfur

modulation. Above one domain, most sulfur atoms move
away from the center-plane of that layer, i.e., they move
towards the next layer. At these positions, the next layer has
its triangular domain-wall region, where there are many long
Ta-Ta distances, and most sulfur atoms will have moved
towards the center plane of this layer. The sulfur displace-
ments in neighboring layers thus are in anticorrelation, such

that the variation in sulfur-to-sulfur distances across the Van
der Waals gap is a minimum, and a maximum packing den-
sity can be reached.
STM images the surface, which for TaS2 consists of a

plane of sulfur atoms. STM on 1T-TaS2 exhibited a pattern
compatible with a domain structure of the NC phase.23 In the
present investigation, it was shown that the domain structure
is reflected in the z modulation of the S atoms. Positive dis-
placements were found for the underlying Ta atoms belong-
ing to 13 clusters, while negative displacements were found
for underlying Ta atoms in the domain-wall region. Accord-
ingly, the z displacement of sulfur directly correlates with
domains and domain walls. A simulated STM image was
now generated, by plotting the sulfur atoms as dots with a
brightness proportional to the z displacement ~Fig. 11!. A
striking similarity is observed with the STM image of the
NC of 1T-TaS2 obtained by Thompson et al. ~Figure 10~c!
in Ref. 23!, and it is concluded that the result of the present
structure determination is in accordance with STM.

VI. CONCLUSIONS

The modulated structure has been determined of 1T-TaS2
in its nearly commensurate state. A large number of harmon-
ics for the modulation functions were included in the refine-
ments, and the result indicated that the shapes of the modu-
lation functions can be approximated by a block wave. In
physical space this corresponds to a domain structure, where
the structure within the domains is that of the commensurate
A13a3A13a superstructure. Maybe the most salient feature
is that we have been able to determine the shapes of the
domains from a crystallographic analysis of the intensities of
Bragg reflections in x-ray scattering. It was found that the
domains have a distorted hexagonal shape. The domain walls
are not regions of constant width, but instead they form a
pattern of corner-sharing triangles, as left over by the corner-
sharing hexagonal domains. This finding is in complete ac-
cordance with the theoretical prediction by Nakanishi and
Shiba17 but deviates from previous x-ray scattering work.25
From the z displacements of the sulphur atoms a simu-

lated STM picture was calculated that showed a striking
similarity with the experimental STM image published in
Ref. 23. It is thus concluded that the result of STM and x-ray
diffraction are in accordance with each other.
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Figure 1 Ambient-pressure phases of 1T-TaS2. The phases are: a metallic phase
at temperatures above 550 K; an ICCDW phase above 350 K; an NCCDW phase
above 190 K; a CCDW Mott phase below 190 K; in addition there is a trigonal phase
present solely during the warming up cycle between 200–300 K (refs 9,10,45). Also
shown are the Ta atom distortions in the fully commensurate phase (bottom left
inset) and the crystal structure of 1T-TaS2 (top right inset).

The neighbouring NCCDW phase equally contains David-star
clusters, although they are arranged in a less uniform manner9.
Ambient-pressure X-ray studies in 1T-TaS2 reveal that in the
NCCDW phase several tens of stars organize into roughly
hexagonal domains, locally reproducing the CCDW phase10,27. The
domains are separated by triangular regions where the amplitude
of the deformation is reduced, forming the planar structure that
resembles the kagome patchwork10,27.

We have carried out resistivity measurements on 1T-TaS2 under
pressures ranging from 0 to 25 GPa and temperatures ranging from
1.3 to 300 K (Fig. 2).

At temperatures below 250 K, we observe a first-order transition
from the NCCDW to the CCDW phase, which melts with a
pressure of 0.8 GPa. At low temperatures, the resistivity saturates
to finite residual values that shift lower and lower as the pressure
is increased. The transition from the incommensurate to the nearly
commensurate CDW phase appears as an increase in the resistivity
in the temperature range of 120–300 K for the whole pressure
range. The first confirmed signatures of superconductivity appear
at 1.5 K and 2.5 GPa. The superconductivity arises from the non-
metallic low-temperature phase, which continuously evolves from
the NCCDW state at ambient pressure.

In addition, at around 4–5 GPa, the resistivity saturates to
a plateau-like temperature dependence below 50 K. The value
of this low-temperature residual resistivity drops as the pressure
is increased, and a metallic-like signature stabilizes in the
low-temperature ranges. Above 8 GPa, the resistivity is metallic
over the entire investigated temperature range, although the
temperature dependence remains unconventional.

We summarize our findings in a pressure–temperature phase
diagram (Fig. 3). The Mott localization and the CCDW phase are
fully suppressed at pressures of about 0.8 GPa. The NCCDW phase
persists to pressures of 7 GPa and may be visualized as roughly
hexagonal CDW domains suspended in an interdomain phase10,27.
The domains are expected to become progressively smaller as
the pressure increases. The first signatures of superconductivity
appear in the NCCDW phase and remain roughly at 5 K
throughout the entire pressure range of 3–25 GPa. For pressures
of 8–25 GPa, the system is metallic over the investigated
temperature range when above the superconducting transition
temperature. Recent preliminary field measurements indicate that
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Figure 2 Resistivity in the pressure range of 0–25GPa and temperature range
of 1.3–300K. a, The temperature dependence of the resistivity is largely
non-metallic over the entire temperature range for pressures of 0–4 GPa; the
low-temperature upturn in the resistivity that relates to the variable-range-hopping
conduction in the Mott phase11,12 disappears above 0.6 GPa; first traces of the
superconductivity are observed at an approximate pressure of 2.5 GPa, with a TSC of
1.5 K; metallic-like behaviour develops for low temperatures at pressures of
4–8 GPa; fully metallic behaviour is present at pressures greater than 8 GPa. b, The
superconductivity first develops with pressure within the non-metallic phase.

the critical magnetic field would be of the order of 1.5 T, in the
lower-pressure ranges.

The questions that emerge from this new phase diagram
address the melting of the CCDW Mott state, the origin of the
textured NCCDW phase in relation to that state and the appearance
of superconductivity in a pristine 1T system, which remains
apparently insensitive to both pressure and the melting of the
charge order.

The exceptional assembly of electron–phonon coupling, nesting
eVects and Coulomb interaction combine to construct the elaborate
phase space of 1T-TaS2. To understand the many complexities
of this system, it is important to consider the microscopics
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The neighbouring NCCDW phase equally contains David-star
clusters, although they are arranged in a less uniform manner9.
Ambient-pressure X-ray studies in 1T-TaS2 reveal that in the
NCCDW phase several tens of stars organize into roughly
hexagonal domains, locally reproducing the CCDW phase10,27. The
domains are separated by triangular regions where the amplitude
of the deformation is reduced, forming the planar structure that
resembles the kagome patchwork10,27.

We have carried out resistivity measurements on 1T-TaS2 under
pressures ranging from 0 to 25 GPa and temperatures ranging from
1.3 to 300 K (Fig. 2).

At temperatures below 250 K, we observe a first-order transition
from the NCCDW to the CCDW phase, which melts with a
pressure of 0.8 GPa. At low temperatures, the resistivity saturates
to finite residual values that shift lower and lower as the pressure
is increased. The transition from the incommensurate to the nearly
commensurate CDW phase appears as an increase in the resistivity
in the temperature range of 120–300 K for the whole pressure
range. The first confirmed signatures of superconductivity appear
at 1.5 K and 2.5 GPa. The superconductivity arises from the non-
metallic low-temperature phase, which continuously evolves from
the NCCDW state at ambient pressure.

In addition, at around 4–5 GPa, the resistivity saturates to
a plateau-like temperature dependence below 50 K. The value
of this low-temperature residual resistivity drops as the pressure
is increased, and a metallic-like signature stabilizes in the
low-temperature ranges. Above 8 GPa, the resistivity is metallic
over the entire investigated temperature range, although the
temperature dependence remains unconventional.

We summarize our findings in a pressure–temperature phase
diagram (Fig. 3). The Mott localization and the CCDW phase are
fully suppressed at pressures of about 0.8 GPa. The NCCDW phase
persists to pressures of 7 GPa and may be visualized as roughly
hexagonal CDW domains suspended in an interdomain phase10,27.
The domains are expected to become progressively smaller as
the pressure increases. The first signatures of superconductivity
appear in the NCCDW phase and remain roughly at 5 K
throughout the entire pressure range of 3–25 GPa. For pressures
of 8–25 GPa, the system is metallic over the investigated
temperature range when above the superconducting transition
temperature. Recent preliminary field measurements indicate that
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Figure 2 Resistivity in the pressure range of 0–25GPa and temperature range
of 1.3–300K. a, The temperature dependence of the resistivity is largely
non-metallic over the entire temperature range for pressures of 0–4 GPa; the
low-temperature upturn in the resistivity that relates to the variable-range-hopping
conduction in the Mott phase11,12 disappears above 0.6 GPa; first traces of the
superconductivity are observed at an approximate pressure of 2.5 GPa, with a TSC of
1.5 K; metallic-like behaviour develops for low temperatures at pressures of
4–8 GPa; fully metallic behaviour is present at pressures greater than 8 GPa. b, The
superconductivity first develops with pressure within the non-metallic phase.

the critical magnetic field would be of the order of 1.5 T, in the
lower-pressure ranges.

The questions that emerge from this new phase diagram
address the melting of the CCDW Mott state, the origin of the
textured NCCDW phase in relation to that state and the appearance
of superconductivity in a pristine 1T system, which remains
apparently insensitive to both pressure and the melting of the
charge order.

The exceptional assembly of electron–phonon coupling, nesting
eVects and Coulomb interaction combine to construct the elaborate
phase space of 1T-TaS2. To understand the many complexities
of this system, it is important to consider the microscopics
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of the diVerent phases at ambient pressure and their possible
evolution under pressure. We will address each of the above posed
questions separately.

MELTDOWN OF THE MOTT PHASE

The standard way of influencing the Mott phase is to aVect the
ratio between the Coulomb repulsion and the bandwidth. These
two relevant energy scales correspond to the parameters U and t of
the single-band Hubbard Hamiltonian, usually used to consider the
Mott transition,

H = �t
X

hi,ji,�

�
c†

i,� cj,� + c†
j,� ci,�

�
+U

X

i

ni,"ni,#

where ci,� and c†
i,� are the destruction and creation operators of an

electron at site i and with spin �, and ni,� = c†
i,� ci,� is the occupation

operator. For the special case of the triangular lattice of David
stars in 1T-TaS2, t and U map to the overlap of the electronic
wavefunctions defined by the deformation localized at David stars,
and the Coulomb interaction of the electrons above the gap within
the same David star, respectively.

The qualitative understanding of the observed phase transition
comes from the insight that pressure changes both the relevant
energy scales, by decreasing the swelling of the planes related
to the David-star deformations in the CDW state. In particular,
by reducing the deformation, the pressure diminishes the CDW
gap and increases the screening capacity of the electrons below
the gap (that is, the interband contribution to the dielectric
function). Similarly, the pressure also weakens the potential that
defines the local wavefunction, thereby increasing its extension
and the wavefunction overlap integral. Both these mechanisms
simultaneously increase t and decrease U , leading to a decrease in
the ratio U/t . The Mott-state melting occurs naturally at a critical
value of this ratio28.

NATURE OF THE TEXTURED PHASE

The NCCDW phase has been subject to numerous experimental
and theoretical investigations at ambient pressure. Previous
theoretical approaches invoked mainly phenomenological
treatments, based on sophisticated versions of the Landau-type
functional, leaving out the microscopic details29,30. However,
the main mechanism behind the creation of the textured phase
has been established to lie in the tendency of the system to
maximize the electronic gap at a given deformation amplitude
by (inter)locking the deformations at (three) commensurate wave
vectors, counteracted by the remnant part of the electrons in the
states above the gap. This leads to a microscopic mechanism for
domain formation, common to many electronic systems with
(charge- or spin-) density waves close to commensurability31.
Essentially, the discommensurations in the textured phase host
the electrons that do not fit below the gap that exists in the
commensurately ordered domains. Notably, however, the size of the
domains in 1T-TaS2 is substantial, containing several hundred TaS2

units within each layer. Therefore, long-range Coulomb forces are
expected to control the charge transfer involved in the domain size
and organization32. This important aspect was omitted in former
theoretical treatments of the NCCDW phase in 1T-TaS2.

We fully include the Coulomb aspect of this charge transfer,
when considering the formation of domains in the NCCDW phase
in 1T-TaS2. The two limiting degrees of this charge relocation leave
the domains either as a lightly (self-)doped Mott state, or fully
depleted. We compare the Coulomb energy per particle involved
in the formation of fully depleted domains, Ec, with the electronic
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Figure 3 The temperature–pressure phase diagram of 1T-TaS2. The Mott
localization is suppressed, closely accompanied by the melting of the CCDW phase
at a pressure of 0.8 GPa; the lattice structure in the latter phase is composed of
interlocking David stars. The NCCDW phase extends over the pressure range of
1–7 GPa, and may be visualized as roughly hexagonal domains suspended in an
interdomain phase, indicated in grey. The first signatures of superconductivity
appear from the NCCDW state, and remain roughly at 5 K throughout the entire
pressure range of 3–25 GPa. In the pressure range of 8–25 GPa, the system is
metallic over the investigated temperature range when above the superconducting
transition temperature. The drawings above and below the phase diagram indicate
the probable deformation patterns in the system at low temperature, as discussed in
the text. Darkly shaded parts denote the parts with the static deformation in the form
of David stars, whereas in the light-shaded areas the deformation is considerably
reduced or completely suppressed.

energy gap � in the domains. The case of Ec ⇠ � implies a
Coulomb-controlled textured phase. The alternatives, unrestricted
by the long-range Coulomb forces, relate to Ec ⌧ � and Ec � �
signifying fully depleted and slightly doped Mott phase domains,
respectively. Figure 4 shows the results of a calculation, for diVerent
domain sizes and organization in successive layers. The calculation
(see the Methods section) is carried out for a kagome patchwork
with two diVerent stacking alignments. Stacking A considers an
axial alignment of domains and interdomain triangles in successive
layers, and has been experimentally observed in 1T-TaS2 (see
Fig. 4, Stacking A). The shifted positions of the domains between
adjacent planes resemble a closely packed face-centred-cubic
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FIG. 3. (a) Fermi surface for the undistorted 1T structure and
(b) reconstructed CCDW superstructure. (c) Energy band
structure near the Fermi level for the undistorted 1T -phase
(blue points) and the reconstructed CCDW superstructure
(solid lines). The band that crosses the Fermi level is plotted
as a red line. (d) Density of states near the Fermi level for
the un-doped 1T -TaS2 and (e) the Fe-doped system.

that is defined by the onset point of the zero-field-cooling
(ZFC) and field-cooling (FC) curves . The smaller mag-
netization value for FC is likely due to the complicated
magnetic flux pinning effects.22 The value of -4πχ at 0.5
K is about 75% where the demagnetization factor is neg-
ligible for H ∥ ab, implying the bulk superconductivity
of Fe0.02Ta0.98S2 sample.

The right top inset of Fig. 2 shows the initial M(H)
curve of 1T -Fe0.02Ta0.98S2 in the low field region at 0.75
K as H ∥ ab, the solid line shows the linear fitting for the
low field range. The obtained slope of the linear fitting
up to 15 Oe of our measurement at 0.75 K is -0.98(6),
and this corresponds to −4πM = H as H ∥ ab, describ-
ing the Meissner shielding effects. And from the deviated
point of the fitting line we can obtain the lower super-
conducting critical field Hc1(0.75K) = 14 Oe. The right
bottom inset of Fig. 2 shows the magnetization hystere-
sis loop of 1T -Fe0.02Ta0.98S2 at 0.5 K as H ∥ ab, and the
shape of the M(H) curves shows that 1T -Fe0.02Ta0.98S2
is a typical type-II superconductor.
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FIG. 4. The electronic phase diagram of 1T -FexTa1−xS2 sin-
gle crystals.

In order to elucidate the Fe-doping effect on the prop-
erties of the host 1T -TaS2, we carried out theoretical
calculation by DFT (shown in Fig. 3). We model the√
13 ×

√
13 × 2 supercell which contains at least one-

site substitution of Ta atom by Fe atom (1/26 dop-
ing level). Figures 3(a) and 3(b) show the calculated
Fermi surfaces (FS) for the undistorted 1T structure and
the reconstructed CCDW superstructure, respectively,
which clearly show that the undistorted 1T -TaS2 has a
quasi-two-dimensional Fermi surface, while the CCDW
phase has a quasi-one-dimensional Fermi surface. Fig-
ure 3(c) shows the calculated energy band structure
near the Fermi leve for the ideal/undistorted 1T -phase
and the reconstructed CCDW superstructure. For the
ideal/undistorted 1T structure, the Ta-d bands cross the
Fermi level EF and strongly disperse along Γ-M -K-Γ
and A-L-H-A, which leads to a good metallic charac-
ter. Along Γ-A only weak dispersion on the Fermi level
is left, consistent with the quasi-2D character of the 1T -
phase structure. The relaxed CCDW structure shows the
star-of-David clusters in which the first and second rings
of Ta atoms averagely contract inwards by 5-6%. The Ta
star-of-David clusters lead the Ta-d state to become lo-
calized in the in-plane directions, which results in a local-
ized uppermost band along Γ-M -K-Γ at about -0.3 eV.
The band at the Fermi level disperses only along Γ-A di-
rection, indicating the existence of quasi-one-dimensional
Fermi surface (see Fig. 3(b)) that allows that electrons
conduct only along the c-axis, and the ab-plane conduc-
tivity becomes worse in CCDW structure.

Figure 3(d) shows the density of states (DOS) for the
undistorted 1T -TaS2 and the distorted CCDW structure.
For the undistorted 1T -phase, a large DOS locates at the
Fermi level. However, in the CCDW structure, the DOS
near the Fermi level shows a pseudogap structure, result-
ing in a semimetal conduction. Considering the correla-
tion of Ta-d electrons, we applied LDA+U method to the
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Fe-doping–induced superconductivity in charge-density-wave system 1T -TaS2
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Fig. 2: (Colour on-line) Temperature dependence of magnetic
susceptibility of 1T -Fe0.02Ta0.98S2 single crystals. The right
top inset shows the initial 4πM(H) isotherm at 0.75K, and
the red line shows the linear fitting in the low-field range. The
right bottom inset shows the magnetization hysteresis loops of
1T -Fe0.02Ta0.98S2 at T = 0.5K as H ∥ ab.

potential and localizes the electrons [26–28]. For our
x= 0.05 sample the AL insulating state potentially exists
at low temperatures. Furthermore, the low-temperature
CCDW phase is suppressed for x! 0.01, and interest-
ingly the signature of superconductivity appears at 2.8
and 2.6K for x= 0.02 and 0.03, respectively, while no
superconductivity appears for x! 0.04 down to 2K (see
the inset of fig. 1(a)). The maximum zero resistivity
temperature is about 2.1K at x= 0.02. So it may be the
optimal doping and we study this composition in details
in the following parts.
Figure 1(b) shows the high-temperature resistivity

of 1T -FexTa1−xS2 single crystals. The samples show
sudden increases of resistivity corresponding to the nearly
commensurate CDW (NCCDW) transitions for x" 0.04.
The inset of fig. 1(b) shows the temperature dependence
of the thermopower (S) for the x= 0 and 0.03 samples.
For the x= 0 sample, S changes signs at about 350K
and 140K, which can be attributed to the NCCDW and
CCDW transitions, respectively [29]; while there is only
one transition at about 340K for the x= 0.03 sample, in
agreement with the resistivity result. This may indicate
that the CCDW phase disappears, while the NCCDW
phase still remains even after 3% Fe doping. Moreover,
the Seebeck coefficient of the x= 0.03 sample becomes
more negative in the whole temperature range, suggesting
that Fe acts at least in part as an n-type doping.
Magnetic characterization of the superconducting tran-

sition for 1T -Fe0.02Ta0.98S2 at 10Oe as H ∥ ab is shown
in fig. 2. The diamagnetism in the low-temperature region

further confirms the existence of superconductivity, and
the steep transition in the M(T ) curve indicates that
the sample is rather homogeneous. The superconducting
transition temperature is about 2.1K that is defined by
the onset point of the zero-field-cooling (ZFC) and field-
cooling (FC) curves. The smaller magnetization value for
FC is likely due to the complicated magnetic flux pinning
effects [30]. The value of −4πχ at 0.5K is about 75% where
the demagnetization factor is negligible for H ∥ ab, imply-
ing the bulk superconductivity of the 1T -Fe0.02Ta0.98S2
sample.
The right top inset of fig. 2 shows the initialM(H) curve

of the 1T -Fe0.02Ta0.98S2 single crystal in the low-field
region at 0.75K as H ∥ ab, which allows us to estimate the
lower critical field values (Hc1) at 0.75K. At low fields,
the M(H) isotherm is linear in H, as expected for a BCS
type-II superconductor. We estimate the Hc1(0.75K)
value to be about 14Oe, marked by an arrow, from
the point where this curve deviates from linearity. The
obtained slope of the linear fitting up to 15Oe of our
experimental data at 0.75K is −0.98(6), which corre-
sponds to −4πM =H as H ∥ ab, describing the Meissner
shielding effects. The right bottom inset of fig. 2 shows
the magnetization hysteresis loop of 1T -Fe0.02Ta0.98S2 at
0.5K as H ∥ ab, and the shape of the M(H) curve further
indicates that 1T -Fe0.02Ta0.98S2 is a typical type-II
superconductor.
In order to elucidate the Fe-doping effect on the prop-

erties of the host 1T -TaS2, we carried out the theoretical
calculation by DFT. Figures 3(a) and (b) show the
calculated Fermi surfaces for the undistorted 1T structure
and the reconstructed CCDW superstructure, respec-
tively, which clearly show that the undistorted 1T -TaS2
has a quasi–two-dimensional Fermi surface, while the
CCDW phase has a quasi–one-dimensional Fermi surface.
Recent theoretical calculations show that the CCDW
reconstruction induces drastic change in the electronic
structure with a pseudogaped Fermi suface [31,32]. The
angle-resolved photoemission spectroscopy (ARPES)
measurement shows the Fermi surface nesting feature
and the CDW distortion enhanced electron-phonon
coupling in 1T -TaS2 [33]. Figure 3(c) shows the calcu-
lated energy band structure near the Fermi level EF for
the ideal/undistorted 1T -phase and the reconstructed
CCDW superstructure. For the ideal/undistorted 1T
structure, the Ta-d bands cross the Fermi level and
strongly disperse along Γ-M -K-Γ and A-L-H-A, which
leads to a good metallic character. Along Γ-A only weak
dispersion on the Fermi level is left, consistent with
the quasi-2D character of the 1T -phase structure. The
relaxed CCDW structure shows the star-of-David clusters
in which the first and second rings of Ta atoms averagely
contract inwards by 5–6%. The Ta star-of-David clusters
lead the Ta-d state to become localized in the in-plane
directions, which results in a localized uppermost band
along Γ-M -K-Γ at about −0.3 eV. The band at the Fermi
level disperses only along the Γ-A direction, indicating
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Figure 2 | Raw data traces indicate the presence of coherent modes of the CDW in La2�x

Sr
x

CuO4 for x=0.10 but not for x=0.16. a, The amplitudon
response is evident through an oscillation of frequency f

A

in the reflectivity transients. This response is observed to persist above the superconducting
transition temperature Tc = 26 K. Inset: the amplitudon response is isolated by subtracting the fitted background electronic response (see text). b, Above
Tc, there is a discrepancy between the PP and TG responses that we attribute to the phason, as described in the text. This difference disappears at ⇠100 K
(inset). c, Data from the x= 0.16 sample (Tc = 38.5 K) show only the quasiparticle recombination dynamics associated with non-equilibrium excitation of
the superconducting state below Tc and a fast electronic transient above Tc. There is no evidence of either the amplitudon or phason above or below the
superconducting transition temperature. Similar behaviour was observed in the x= 0.36 sample (not shown). d, TG and PP transients at 50 K in the
x= 0.16 sample. There is no discernible difference between the two traces.

Using ultrafast spectroscopy, we present evidence for the
coherent generation and detection of the collective modes of
the fluctuating CDW in a La1.9Sr0.1CuO4 thin film. Following
uniform photoexcitation by an ultrashort laser pulse, we observe
highly damped oscillations in the reflectivity of a time-delayed
probe pulse (pump–probe (PP) spectroscopy). The frequency
of these oscillations as well as the temperature and excitation
density dependence of their amplitude indicates that they arise
from the amplitudon of the CDW. When we perturb the system
with a spatially varying sinusoidal excitation density (transient
grating spectroscopy24, seeMethods), we observe an additional slow
response that we ascribe to the phason. Using predictions for the
temperature evolution of the phason damping rate25,26, we obtain
an estimate of the CDW fluctuation lifetime ⌧F.

Figure 2a shows PP data at a succession of temperatures. For
T <Tc, there is a short ⇠1 ps spike that is identical to the response
for T > Tc and was not observed to change in dynamics up to
300K. We interpret this as arising from uncondensed electrons and
will refer to it below as the normal component. This fast electronic
response is followed at short times by highly damped oscillations
that are superposed on the slow response due to quasiparticle
recombination; this slow response has been studied extensively27,28
and will not be discussed further here. The oscillation is isolated by
subtracting the slow response (Fig. 2a, inset). As the temperature is
increased across Tc, the oscillations persist with decreasing strength
up to⇠100K, abovewhich they cannot be discerned from the noise.

To study the CDW dynamics without the presence of the
superconducting state, we show data taken in the PP and transient
grating (TG) geometry at 45 K (that is, T > Tc; Fig. 2b). Here, we
observe the presence of the normal response described above and
another component that provides a TG response that decays more
slowly than that measured in the PP geometry. This extra response
disappears when the temperature is raised to 100K (Fig. 2b, inset).
In contrast with the data of Fig. 2a,b, there are no oscillations in
an optimally doped La1.84Sr0.16CuO4 (Tc = 38.5K) sample at any
temperature, as seen in Fig. 2c for 5 and 50K. We further note that
this sample produced a TG response that was identical to the PP
response above Tc, as shown in Fig. 2d.

We now proceed to establish that the oscillatory response of
Fig. 2a originates from the amplitudon. Adapting an approach
similar to that in ref. 17, we fit the data of Fig. 2a to a model
that comprises both the electronic and oscillatory components as
1R(t )/R=Ae�t/⌧A sin(2⇡fAt )+Cs(t ), where A is the magnitude of
the oscillating component, ⌧A is its lifetime and fA is its frequency.
C represents the strength of the electronic response s(t ) due to
quasiparticle recombination below Tc and due to charge relaxation
above Tc. A representative fit is shown in Fig. 3a, where we observe
excellent agreement between the model function and the data,
yielding the frequency fA = 2.0 THz (67 cm�1) and the lifetime
⌧A =300 fs. Neither fA nor ⌧A was observed to vary with temperature
within our experimental uncertainties, although the amplitude A
of the response diminishes with temperature until it is no longer
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Cuprate materials hosting high-temperature superconductivity
(HTS) also exhibit various forms of charge and spin ordering1–6

whose significance is not fully understood7. So far, static
charge-density waves8 (CDWs) have been detected by diffrac-
tion probes only at particular doping levels9–11 or in an applied
external field12. However, dynamic CDWs may also be present
more broadly and their detection, characterization and rela-
tionship with HTS remain open problems. Here we present a
method based on ultrafast spectroscopy to detect the presence
and measure the lifetimes of CDW fluctuations in cuprates.
In an underdoped La1.9Sr0.1CuO4 film (Tc = 26K), we observe
collective excitations of CDW that persist up to 100K. This
dynamic CDW fluctuates with a characteristic lifetime of 2 ps
at T = 5K that decreases to 0.5 ps at T= 100K. In contrast,
in an optimally doped La1.84Sr0.16CuO4 film (Tc = 38.5K), we
detect no signatures of fluctuating CDWs at any temperature,
favouring the competition scenario. This work forges a path for
studying fluctuating order parameters in various superconduc-
tors and other materials.

Among the rich structural, magnetic and electronic phases of the
cuprates, there exist various forms of modulated charge order1–6. A
particularly well-studied example is found in La2�x(Sr,Ba)xCuO4
for x ⇠ 0.02–0.14, where a fraction of the carriers forms a CDW
(ref. 8) coexistent with magnetic density-wave ordering in a config-
uration sometimes referred to as stripes9,13. In a narrow doping re-
gion around x = 1/8, the charge ordering in La2�xBaxCuO4 is static
and eliminates superconductivity12. However, in La2�xSrxCuO4
(LSCO), the impact of the densitywave ismitigated14, causing only a
slight depression inTc in the vicinity of x=1/8. This is probably due
to the dynamical nature of the density wave, which fluctuates with a
finite correlation time ⌧F (represented schematically in Fig. 1a).

This fluctuating characteristic has been a central issue in the
debate surrounding the role of CDWs in the cuprates7, in particular,
whether they favour—or even enable—HTS, or compete with
it. In the competition scenario, the stability of the fluctuating
CDW should decrease with higher values of Tc because both the
CDW and the superconducting order would compete for charge
carriers. To study fluctuating order, researchers have relied on
quasi-static probes of local order7 in a configuration where the
density wave has been stabilized either by an external magnetic
field15 or by adding specific dopants, for example, Nd (refs 9,
10) or Eu (ref. 11). These requirements have only recently been
surmounted by the use of resonant inelastic X-ray scattering5 and
high-energy X-ray diffraction6, although these techniques have yet
to provide dynamical information about the CDW from which the
critical behaviour of ⌧F may be elucidated.

In contrast, ultrafast metrologies provide a new opportunity to
probe dynamics of charge correlations directly without the need
for stabilizing fields or impurities16. Among the various degrees of
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freedom that may be probed are the collective modes of the CDW,
as depicted in Fig. 1b. Here, absorption of an ultrafast laser pulse
generates single-particle excitations of the CDW and hot carriers17.
These may be manipulated to either coherently drive oscillations
of the magnitude of the charge order, that is, the amplitude mode
(amplitudon), or induce the collective sliding of the modulated
charge, that is, the phase mode (phason). The amplitudon is
generated by uniform illumination of the sample whereas the
phason may be driven, as we describe below, by a sinusoidally
modulated excitation density—a transient grating—created by the
interference of two temporally and spatially coincident beams.

In the cuprates, the amplitudon and phason of the CDWhave so
far been probed using Raman scattering in LSCO single crystals18,19
where their broad frequency-domain features did not allow a
reliable extraction of their lifetimes. In contrast, a time-domain
approach, similar to studies in conventional CDW systems17,20–23,
would allow an accurate characterization of these highly damped
modes, and thus provide information on the dynamical nature of
the CDW and yield its fluctuation time ⌧F.
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Figure 1 | Fluctuating density waves and their normal modes. a, Schematic
illustrating the dynamics of the fluctuating CDW. The spatial organization
of the CDW order changes within the fluctuation lifetime ⌧F. b, The CDW
gives rise to two collective excitations: the amplitude mode (amplitudon),
which represents an overall oscillation of the CDW amplitude, and the
phase mode (phason), which is due to a sliding of the CDW along the
modulation direction. c, The amplitudon exhibits optical dispersion
whereas the acoustic phason dispersion is gapless owing to the
incommensurability of the density wave with respect to the lattice.
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generates single-particle excitations of the CDW and hot carriers17.
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phason may be driven, as we describe below, by a sinusoidally
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of corner-sharing triangles. This result is different from the
model proposed by Yamamoto,25 who proposed the honey-
comb lattice as domain structure. However, our result is in
excellent agreement with the theory of Nakanishi and
Shiba,17 who indeed found a pattern of corner-sharing hexa-
gons as the domain structure of the NC phase ~Fig. 3 in Ref.
17!.
The relation between the structures of different layers is

determined by the centering translations (Eu0,0, 13 ,6 2
3 ,6 1

3 ),
or equivalently by the commensurate components of the
modulation wave vectors. The phase shifts of the modulation
in neighboring layers therefore are 6(2 1

3 , 13 ). The effect in
the structure is that the centers of the domains in neighboring
layers are shifted such that the centers of the domains in one
layer are on top of the centers of one half of the triangular

regions forming the domain walls ~Fig. 8!. The domains thus
form a pattern similar to a hexagonal close packed lattice.

C. Correlation between tantalum and sulfur modulations

The modulation of the S atom is much smaller than that of
Ta. It has contributions in all three directions, but the largest
amplitudes are along c ~Table V!. The uz modulation of S ~ 23 ,
1
3 , 0.086! at the position ~ 23 , 13 , 0.086! is drawn as a function
of (t1 ,t2) in Fig. 10. The threefold site symmetry of the S
atom is clearly visible. The z modulation can be character-
ized by large plateaus with positive displacement (uz
50.106 Å) and slightly smaller plateaus with negative dis-
placement (uz520.124 Å). The boundaries between the
positive and negative regions are rather sharp, and a block
wave is a reasonable approximation for this function.

FIG. 8. ~a! Ta atoms in the layer z50 in a region of 1003100 unit cells. Only atoms belonging to complete clusters are plotted as dots.
The regions with domain-wall-like structure are left blank. The modulation in x ,y direction for the Ta atoms is exaggerated five times. The
origin (t1 ,t2)5(0,0) is the lower left point. ~b! The same as ~a! for the Ta atoms in the layer z5 1

3 . ~c! Ta atoms in the layer z50. An
enlargement of ~a! is shown, now with the atoms in the domain walls plotted as heavy dots.
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~0,0,0!, Ta ~1,0,0!, and Ta ~1,1,0! ~Fig. 7!. Extending the
comparison of t plots, then shows that the uz modulation of
the S has a maximum for those phase values where the dis-
tances between the three underlying Ta atoms are a mini-
mum and vice versa ~Figs. 3, 4, 5, and 10!. It is thus found
that there is a strong correlation between the modulations of
Ta and S, such that sulfur atoms are pushed out of the layer
when the coordinating tantalum atoms move towards each
other, and the other way around. Further analysis shows this
to be a general property of the modulation, implying that all
sulfur atoms above a 13 cluster move outwards, and that
sulfur atoms between 13 clusters and within the domain
walls move towards the center of the layer. This result is in
accordance with a similar finding for the commensurate
superstructure.7
The hcp stacking of layers is now explained by the sulfur

modulation. Above one domain, most sulfur atoms move
away from the center-plane of that layer, i.e., they move
towards the next layer. At these positions, the next layer has
its triangular domain-wall region, where there are many long
Ta-Ta distances, and most sulfur atoms will have moved
towards the center plane of this layer. The sulfur displace-
ments in neighboring layers thus are in anticorrelation, such

that the variation in sulfur-to-sulfur distances across the Van
der Waals gap is a minimum, and a maximum packing den-
sity can be reached.
STM images the surface, which for TaS2 consists of a

plane of sulfur atoms. STM on 1T-TaS2 exhibited a pattern
compatible with a domain structure of the NC phase.23 In the
present investigation, it was shown that the domain structure
is reflected in the z modulation of the S atoms. Positive dis-
placements were found for the underlying Ta atoms belong-
ing to 13 clusters, while negative displacements were found
for underlying Ta atoms in the domain-wall region. Accord-
ingly, the z displacement of sulfur directly correlates with
domains and domain walls. A simulated STM image was
now generated, by plotting the sulfur atoms as dots with a
brightness proportional to the z displacement ~Fig. 11!. A
striking similarity is observed with the STM image of the
NC of 1T-TaS2 obtained by Thompson et al. ~Figure 10~c!
in Ref. 23!, and it is concluded that the result of the present
structure determination is in accordance with STM.

VI. CONCLUSIONS

The modulated structure has been determined of 1T-TaS2
in its nearly commensurate state. A large number of harmon-
ics for the modulation functions were included in the refine-
ments, and the result indicated that the shapes of the modu-
lation functions can be approximated by a block wave. In
physical space this corresponds to a domain structure, where
the structure within the domains is that of the commensurate
A13a3A13a superstructure. Maybe the most salient feature
is that we have been able to determine the shapes of the
domains from a crystallographic analysis of the intensities of
Bragg reflections in x-ray scattering. It was found that the
domains have a distorted hexagonal shape. The domain walls
are not regions of constant width, but instead they form a
pattern of corner-sharing triangles, as left over by the corner-
sharing hexagonal domains. This finding is in complete ac-
cordance with the theoretical prediction by Nakanishi and
Shiba17 but deviates from previous x-ray scattering work.25
From the z displacements of the sulphur atoms a simu-

lated STM picture was calculated that showed a striking
similarity with the experimental STM image published in
Ref. 23. It is thus concluded that the result of STM and x-ray
diffraction are in accordance with each other.
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The evolution of SP lifetimes 
through the “transition”

field studies51 have suggested that the PG may originate from the
states inside the Mott gap, which are characterized by s-wave
symmetry and very weak dispersion. Such a localized nature of
the PG state excitations is consistent with previous assignments
made on the basis of pump-probe experiments39,48. In contrast, the
superconducting gap fluctuations have predominantly d-wave
symmetry52 and are more delocalized. This would explain the sim-
ultaneous presence of the SC fluctuations and PG components in
pump-probe experiments.

Perhaps the most widely discussed model in the context of distinct
pairing and phase coherence phenomena is the Berezinskii-
Kosterlitz-Thouless (BKT) transition53–55 by which decreasing tem-
perature through Tonset and approaching Tc causes freely moving
thermally activated vortices and anti-vortices to form pairs, thus
allowing the condensate to acquire long range phase coherence in
an infinite-order phase transition sharply at Tc. The bare pair density
is finite to much higher temperatures (up to Tonset), where pairing is
caused by a different mechanism, and the pseudogap is considered to
be an unrelated phenomenon56–59. The effect is characterised in terms
of a phase stiffness rs, a quantity which characterizes the destruction
of phase coherence by thermal fluctuations at a temperature Tc 5
TBKT 5 prs/8. In cuprates rs is small due to reduced dimensionality
and the low carrier density. Within this approach a.c. (THz) con-
ductivity19,43, heat capacity20,21, diamagnetism26,31, ARPES22 and
Nernst effect23–25,60 measurements were interpreted.

The BSCCO family is the most two-dimensional of the cuprate
materials, so here the BKT mechanism for describing the order above
Tc would be expected to be most applicable43. However, the data in
Fig. 2a) show that the drop in th is not nearly as abrupt as the BKT
model predicts. One possibility is that this broadening arises from
chemical inhomogeneity of the sample, but the absence of a peak in
the heat capacity at Tonset

20 also appears to exclude the possibility of a
pure BKT transition, and implies amplitude fluctuations might be
present between Tc and Tonset as well21. Thus additional mechanisms
beyond BKT may also be present which would broaden the phase
coherence transition, such as interlayer phase fluctuations. In this
case the observed T-dependence would reflect the interlayer de-
coherence19,43.

In more traditional approaches using time-dependent Ginzburg-
Landau (TDGL) theory61, thermal fluctuations are small for tempera-
tures higher than ,2 K above Tc

62, but can give an observable con-
tribution to the conductivity in this temperature range17,18,28–30.
Relaxation within TDGL theory has a ‘‘longitudinal’’ relaxation time
tD, which corresponds to the relaxation of the magnitude of the SC
order parameter, and a ‘‘transverse’’ relaxation time th which corre-
sponds to the relaxation of its phase. They are related to each other in
magnitude, but have the same temperature dependence near Tc,
namely tGL , 1/(T 2 Tc)63. Perhaps unexpectedly, the temperature
dependence of tTHz

h nearly coincides with the behavior predicted for
th by time-dependent Ginzburg Landau theory for Gaussian fluctua-
tions. Fig. 2a) suggests that phase coherence within this system is
established in a narrow, ,5 K temperature interval. However, the
distinctly different critical behavior of the pair amplitude dynamics
speaks in favor of unconventional models of superconductivity in
which pairing and phase coherence occur independently, by different
mechanisms. The implication is that the observed pairing amplitude
which extends to more than 25 K above Tc reflects the response of an
inhomogeneous ensemble of gapped patches which are not mutually
phase coherent. The weak temperature dependence of the amplitude
cannot be described either by TDGL or BKT models.

Beyond the BKT vortex and TDGL scenario, other phase-locking
scenarios, such as Bose-Einstein condensation of bipolarons2,3,64 and
phase-coherence percolation4,5 may also be consistent with the
observed behaviour. In both of these cases pairing and phase coher-
ence are also distinct processes. The former comes from the con-
densation of pairs at Tc as preformed pair kinetic energy is reduced,

while percolation dynamics is associated with the time dynamics of
Josephson tunneling between fluctuating pairs or superconducting
patches. The percolation timescale tJ is given by the Josephson
energy EJ 5 Icw0/2p, where Ic is the critical current and w0 is the flux
quantum. In cuprates, tJ~!h=EJ^300 fs, which is compatible with
the dynamics of phase shown in Fig. 2a).

A picture highlighted by Fig. 2 thus emerges in these materials
where the relaxation of the phase h is faster than relaxation of the
amplitude y of the complex order parameter Y 5 yeih, the dynamics
of y and h being governed by microscopically different processes. It is
worth remarking here that the opposite situation is found in charge
density wave dynamics, where the phase relaxation is slow compared
to the amplitude relaxation, and the dynamics can be described by
TDGL equations for the amplitude y, neglecting phase relaxation h45.

Methods
Samples. The samples used in this work were under-, near optimally- and over-
doped Bi2212 with Tcs of 81, 85 and 80 K respectively. Samples were grown by the
traveling solvent floating zone method. Critical temperatures were obtained from
susceptibility measurements (e.g. inset in Fig. 1a) for the underdoped sample).
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Figure 3. Typical result of the three pulse experi-
ment. Underdoped sample at 120 K, the D pulse fluence
is 204 µJ/cm2 . The time of the D pulse arrival is shown by
the dashed line. The D pulse suppresses the negative pseu-
dogap component, whereas the hot electron energy relaxation
response remains intact. Note that at later t

D�P

the positive
component is masked by the stronger negative PG component
with a slower rise time.The inset shows a schematic picture
of the three-pulse pump-probe experiment with the sequence
of pulses and notation of delays. Colors of the pulses do not
correspond to their photon energy.

Figure 4. Evolution of amplitude and QP relaxation
time. Quasiparticle relaxation time (black dots, left axis)
and the amplitude(red open circles, right axis) of the pseudo-
gap component (data shown in inset) as a function of t

D�P

.
Quasiparticle relaxation time remains constant for all values
of t

D�P

. Inset: Pseudogap component for different values of
t
D�P

(F = 204µJ/cm2, T = 120K).

fluence independent. Remarkably, for all temperatures
and fluences, the PG recovery shown in Fig. 5 can be
fit with an exponential function, which is not the case in
the recovery of SC and CDW orders, where the dynami-
cal recovery behavior associated with the formation of a
collective state is more complicated. Such a simple expo-

Figure 5. Recovery of the PG state after destruction
by a laser pulse as a function of fluence at different
temperatures. The normalized amplitude of the pseudogap
component as a function of t

D�P

for different fluences at a
number of temperatures is plotted. Inset: the recovery time
⌧
rec

as a function of fluence F at different temperatures.

nential recovery is consistent with uncorrelated dynamics
of independent particles.

DISCUSSION

The distinct absence of critical behavior as t ! t
c

in the
PG state gives us new insight into the mechanisms for its
formation. The absence of a divergence in the SP exci-
tation dynamics is a signature of finite size of the system
either limited externally or just indicating a local nature
of the excitation. The 50 fs uncertainty of the measured
value of ⌧

QP

allows us to put an upper limit on the corre-
lation size of the pseudogap excitation. Taking the Fermi
velocity as a maximum fluctuations propagation speed of
v
F

⇠ 150 nm/ps46 we obtain ⇠max

cor

⇠ 75 Å which is only
a few superconducting coherence lengths, and indicates
a rather local nature of the PG state.
A number of experiments suggest that the pseudogap is
associated with bound (or localized) states16,47–51. A
simple but plausible picture25 is that photoexcitation
leads to the excitation of carriers from these states into
itinerant states. Thereafter binding takes place on a
timescale given by ⌧

rec

which is nearly independent on
fluence and temperature, again suggesting non-collective
behavior . This picture is supported by the fact that
the pseudogap is filled rather than destroyed (i.e. closed)

after photoexcitation52, i.e. a number of delocalized “in-
gap states appear” without strongly altering the binding
energy. This is tantamount to saying that the states do
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Separating pairing from quantum phase
coherence dynamics above the
superconducting transition by
femtosecond spectroscopy
I. Madan1, T. Kurosawa2, Y. Toda3, M. Oda2, T. Mertelj1, P. Kusar1 & D. Mihailovic1

1Jozef Stefan Institute and International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia, 2Department of Physics,
Hokkaido University, Sapporo 060-0810, Japan, 3Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan.

In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the
transition to the superconducting state. In high-temperature superconductors, the possibility that pairing
and phase coherence are distinct and independent processes has led to intense experimental search of their
separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly
separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above
the critical transition temperature. Empirically establishing a close correspondence between the superfluid
density measured by THz spectroscopy and superconducting optical pump-probe response over a wide
region of temperature, we find that in differently doped Bi2Sr2CaCu2O81d crystals the pairing gap
amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law
divergence as T R Tc, thus showing that phase coherence and gap formation are distinct processes which
occur on different timescales.

A
nomalous normal state behavior above the critical temperature appears to be a hallmark of unconven-
tional superconductivity and is present in many different classes of materials. A pseudogap (PG) state has
been suggested to be associated with a wide range of possible phenomena preceding the onset of mac-

roscopic phase coherence at the superconducting (SC) critical transition temperature at Tc: pre-formed pairs1–9, a
spin-gap10, the formation of a Bose metal11, a Fermi or Bose glass, or a state composed of ‘‘dirty bosons’’12–14, and
more recently a charge-density-wave state15,16.

In addition to the PG response below the temperature designated as T*, the response attributed to ‘‘super-
conducting fluctuations’’ above Tc has been observed in a number of experiments17–27. The temperature region Tc
, T , Tonset where such fluctuations are observable is significantly wider than in conventional superconductors,
but smaller than T*. The open and obvious question is whether the pseudogap, or the superconducting fluctua-
tions can be attributed to pairing.

The problem in separating the response due to superconducting fluctuations from the PG is that so far,
inevitably, one has had to make extrapolations, or assumptions about the response functions underlying tem-
perature dependences and line shapes in transport17,18,28–30, magnetic susceptibility26,31, specific heat20,21 or photo-
emission (ARPES)22, which may at best introduce inaccuracies in the temperature scales, and at worst lead to
erroneous conclusions. Alternatively one can suppress superconductivity by high magnetic fields up to 60 T32,
although there exists a risk of inducing new states by such a high field33. Thus, so far it has not been possible to
satisfactorily characterize superconducting fluctuations and discriminate between fluctuations of the amplitude
dy (related to the pairing gap) and phase dh of the complex order parameter Y 5 yeih.

In pump-probe experiments three relaxation components shown in Fig. 1 a) are typically observed34: 1) the
quasiparticle (QP) recombination in the SC state, 2) pseudogap state response below T* and 3) energy relaxation
of hot electrons. The QP dynamics has been shown to be described very well by the Rothwarf-Taylor (R-T)
model35,36, and the response related to the presence of non-equilibrium QPs is thus unambiguous. Importantly,
the presence of the QP response is directly related to the presence of a pairing gap for QP excitations.

Pump-probe experiments have already shown the coexistence of the pseudogap excitations with supercon-
ductivity below Tc over the entire range of phase diagram37–41. However, little attention has been paid to the region
of superconducting fluctuation. In this paper we present measurements by a 3-pulse technique which allows us to
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Phase coherence and SC gap formation are distinct 
processes which occur on different timescales. 
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Conclusions

• nanoscale physics unavoidably involves 
topological defects in cuprates and 
dichalcogenides

• the PG state is a result of carrier 
localisation, not a proper CDW phase.

• phase coherence and pairing gap are 
separable in time-domain (distinct from the 
PG)
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Dark resistance of 100nm film of 1T-TaS2

Resistance after a laser pulse
1T-TaS2 

Au contacts 

50 um

Switching to a hidden state in 1T-TaS2 : 
Resistance change after a (single) 35 fs pulse
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1T-TaS2: Collective mode switching
W

1T-TaS2 

E

p
P

Detector

W = 50 fs “write”
E = 50 ps “erase”
P = “pump” (50 fs)
p = “probe” (50 fs)

Ljupka Stojchevska

L Stojchevska et al. Science 2014;344:177-180
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Photo”doping” and ordering of 
voids
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The addition of a h+ to the C structure annihilates a polaron, creating a void.
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Figure 3. Typical result of the three pulse experi-
ment. Underdoped sample at 120 K, the D pulse fluence
is 204 µJ/cm2 . The time of the D pulse arrival is shown by
the dashed line. The D pulse suppresses the negative pseu-
dogap component, whereas the hot electron energy relaxation
response remains intact. Note that at later t

D�P

the positive
component is masked by the stronger negative PG component
with a slower rise time.The inset shows a schematic picture
of the three-pulse pump-probe experiment with the sequence
of pulses and notation of delays. Colors of the pulses do not
correspond to their photon energy.

Figure 4. Evolution of amplitude and QP relaxation
time. Quasiparticle relaxation time (black dots, left axis)
and the amplitude(red open circles, right axis) of the pseudo-
gap component (data shown in inset) as a function of t

D�P

.
Quasiparticle relaxation time remains constant for all values
of t

D�P

. Inset: Pseudogap component for different values of
t
D�P

(F = 204µJ/cm2, T = 120K).

fluence independent. Remarkably, for all temperatures
and fluences, the PG recovery shown in Fig. 5 can be
fit with an exponential function, which is not the case in
the recovery of SC and CDW orders, where the dynami-
cal recovery behavior associated with the formation of a
collective state is more complicated. Such a simple expo-

Figure 5. Recovery of the PG state after destruction
by a laser pulse as a function of fluence at different
temperatures. The normalized amplitude of the pseudogap
component as a function of t

D�P

for different fluences at a
number of temperatures is plotted. Inset: the recovery time
⌧
rec

as a function of fluence F at different temperatures.

nential recovery is consistent with uncorrelated dynamics
of independent particles.

DISCUSSION

The distinct absence of critical behavior as t ! t
c

in the
PG state gives us new insight into the mechanisms for its
formation. The absence of a divergence in the SP exci-
tation dynamics is a signature of finite size of the system
either limited externally or just indicating a local nature
of the excitation. The 50 fs uncertainty of the measured
value of ⌧

QP

allows us to put an upper limit on the corre-
lation size of the pseudogap excitation. Taking the Fermi
velocity as a maximum fluctuations propagation speed of
v
F

⇠ 150 nm/ps46 we obtain ⇠max

cor

⇠ 75 Å which is only
a few superconducting coherence lengths, and indicates
a rather local nature of the PG state.
A number of experiments suggest that the pseudogap is
associated with bound (or localized) states16,47–51. A
simple but plausible picture25 is that photoexcitation
leads to the excitation of carriers from these states into
itinerant states. Thereafter binding takes place on a
timescale given by ⌧

rec

which is nearly independent on
fluence and temperature, again suggesting non-collective
behavior . This picture is supported by the fact that
the pseudogap is filled rather than destroyed (i.e. closed)

after photoexcitation52, i.e. a number of delocalized “in-
gap states appear” without strongly altering the binding
energy. This is tantamount to saying that the states do

Calculated temperature

Phase coherence and pairing timescales vs. T

Ultrafast carrier localisation in the PG state
not proper CDW
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