Thermalization of electron-boson systems described by a
pure state

Lev Vidmar

The Pennsylvania State University

“Next generation” @ ICTP, September 26, 2016



Keywords in recent talks

Quantum Nonequilibrium

-

Ultrafast experiments in condensed matter

Review: Giannetti et al, Adv. Phys. (2016)



() = e~ |

Two nontrivial outcomes of unitary time evolution
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These two concepts are fundamentally different

It underlines the need to understand when and how fast does a condensed-matter
system thermalize



Why is understanding of thermalization important in condensed matter?

& Common belief: undriven systems, at asymptotic times after perturbation, should
approach a thermal state

© However, time-resolved experiments may now study the response at extremely

short times after perturbation

(in particular ultrafast optics ...)

In a short time interval, the dynamics may be efficiently described by models
taking into account only the most important interactions

This implies that in a given time interval, the system behaves as a closed quantum system
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Closed quantum systems are peculiar:

Many of their properties are implicitly assumed, but rarely verified



Challenges for “Next generation™ (1)

Nobel prize 2001

Experimental realization of
Bose-Einstein condensation
(1995)

“Ultracold atoms in perfectly isolated environment at temperature 20 nK”
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Challenges for “Next generation” (2)

“A closed quantum system can never thermalize”

“It is described by a pure state, hence its entropy is always zero”



Closed quantum systems do thermalize

O  The notion of temperature is valid for generic quantum systems

Review: d’Alessio, Kafri, Polkovnikov, Rigol, Adv. Phys. (2016); and many others

O The total entropy of a pure state remains zero forever, however, the entanglement
entropy between subsystems increases and reach thermal predictions

Verified experimentally with ultracold bosons

Kaufman et al, Science (2016)
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How about condensed-matter systems in pump-probe experiments?

Two extreme views:

© “The pump pulse creates a thermal electronic distribution, at elevated temperature”

(Not entirely correct. However, thermalization can occur very fast ...)

© “Electrons reach a thermal distribution only after completion of the whole
hierarchy of relaxation processes”

(Probably too conservative ...)



Motivation: ultrafast optics

State-of-the-art: Width of the pump pulse ~ 15 fs, Broadband probe at a delay of ~40fs
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Modeling of the data consistent with ultrafast relaxation of charge carriers
with strongly-coupled excitations of bosonic origin

Thermalization of charrge carriers strongly coupled to a single branch
of bosonic excitations (“local”’ bosons) occurred within 40 fs?



Case studied in the following:

Strongly-coupled boson = dispersionless phonon

Kogoj, Vidmar, Mierzejewski, Trugman, BoncCa, PRB (2016)



Holstein model (single electron)

Electron in the initial state
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Can phonons act as a reservoir/bath?

© Does their spectrum from a continuum?

© Is their intrinsic time scale much shorter than the typical electron time scale?



The system nevertheless does thermalize
“Thinking about thermalization in terms of system + bath is old fashioned”

©  Electron and phonons form a closed quantum system

O  Simply solve the time-dependent Schroedinger equation exactly
—iHt
[9(t)) = e [tho)

(W(®)|OlY(t)) = Tr{fstac O}



Initial state and numerical method

Initial state
Interaction quench / \ Field quench
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Drive by a constant electric
field F in a time interval

to reach the same target energy
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Ground-state properties Bonca, Trugman, Batisti¢, PRB (1999)

Nonequilibrium dynamics Vidmar, Bon&a, Mierzejewski, Preloviek, Trugman, PRB (2011)

Finite-temperature equilibrium Kogoj, Vidmar, Mierzejewski, Trugman, Bon¢a, PRB (2016)



Independence of initial state
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However:

© Independence of initial state is only a necessary condition

© Demonstrated only for one observable



One-particle density matrix

Goal: to make a statement about all static one-particle correlations
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©  Eigenvalues of the fermionic one-particle density matrix

Thermalization of static electronic correlations on the entire lattice



Dynamic correlations

Result on static observables does not immediately extend to dynamic observables
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Calculate optical conductivity at time t after the quench without applying

time-translation invariance

o' =Reo(w,t)

LenarCic, Golez, BoncCa, PrelovSek, PRB (2014)

Optical conductivity ¢’ (a.u.)
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Field quench
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Dynamic correlations

Test thermalization without explicitly carrying out calculations in the Gibbs ensemble

© Thermal equilibrium ©  Nonequilibrium
/ 1 — —w/T

Trep () = ————C(w)
Clw) =R [t Te{jni()i0)} Clont) =R [ dset"*(ulit + )30l

- Cw) -C(~w) w ~ C(w,t) = O(—w,t)
Rlw) = C(w) + C(—w) = tanh <2T) Rlw, ) = C(w,t) + C(—w,t)

Interaction quench Field quench
1 1
x 0 0

10,1316




Dynamic correlations

Test thermalization without explicitly carrying out calculations in the Gibbs ensemble

Interaction quench
Field quench

tanh(w/(27))

Interaction quench

Field quench

10 1316

0 2 4
o (t)




Static and dynamic correlations - Temperature

Static fermionic correlations: temperature obtained from the Gibbs ensemble by
matching the electron kinetic energy

Dynamic correlations: temperature obtained by fitting (R(w, t))+
with the thermal form tanh(w/(27T))
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The temperature, measured in response functions, is the temperature
of the closed electron-phonon system



Conclusions

O  Simple, closed quantum systems may thermalize extremely fast

(Useful input for ultrafast optical experiments)

©  “Thinking about thermalization in terms of system + bath is old fashioned”

(Is it really true? Find more examples ...)

Thank you!
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