

X-RAY SERVER: DYNAMICAL DIFFRACTION ON THE WEB. SCOPE, HISTORY, CAPABILITIES, AND PLANS

SERGEY STEPANOV

Argonne National Laboratory, Advanced Photon Source, Lemont, IL, USA

October 2016, SOS Workshop, Trieste, Italy

What is X-ray Server?

X-Ray Server (x-server.gmca.aps.anl.gov) is a WWW-based computational server for modeling of X-ray diffraction, reflection and scattering. All software operates directly on the server and can be accessed remotely either from web browsers or from user software so that the server can be deployed as a software library or data fitting engine.

Goals:

- explore simplest ways to share scientific software with community using WWW.
- avoid porting software to multiple platforms and maintaining multiple versions.
- be able to collect feedback from users, correct errors and prevent misuse of programs beyond the limits of X-ray scattering models they implement.

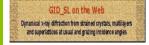
Technology:

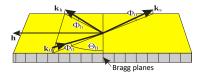
- http interface (CGI wrappers) to unchanged scientific software

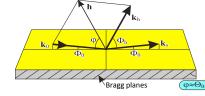
History:

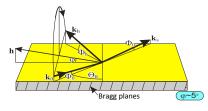
- online since 1997; free and no registration,
- served more than 2 million jobs,
- about 5000 IPs used it 10 or more times

Software available through X-ray Server


http://x-server.gmca.aps.anl.gov (online since 1997)


x _{ot} on the Vel <mark>!!</mark> x _{ot} search \wp	X0h interpolates dielectric susceptibilities for crystals and other materials in wide range of X-ray energies with the option to compare data from different DBs. X0h+ provides search for Bragg planes in crystals under various conditions (Bragg angle, strong reflections).	1,262,567
GID_SL on the Web Dynamical x-ray diffraction from strained crystals, multilayers and superlattices at usual and grazing incidence angles	GID_sI models X-ray diffraction curves from perfect and strained crystals, as well as multilayers for any Bragg-case diffraction with scans around arbitrary axes.	724,776
TER_SL on the Web X-ray specular reflection from multilayers with rough interfaces at grazing incidence	TER_sl calculates X-ray specular reflection and respective X-ray standing waves from multilayers with interface roughness.	150,728
BRL on the Web X-ray multiple Bragg/Laue diffraction	BRL models multiple Bragg diffraction of X-rays by perfect crystals including the cases of X-rays grazing along the surface and Bragg angles close to 90°.	52,007
deWeith no JC_COST exhebition (priverprepring) and for eaching very ceeninguor eachemi (priver)	TRDS_sl calculates X-ray diffuse scattering for several models of interface roughness in multilayers.	22,012
MAG_SL on the Web X-ray resonant specular reflection from magnetic multilayers	MAG_sl calculates X-ray resonant specular reflection from magnetic multilayers with interface roughness and transition layers.	19,032

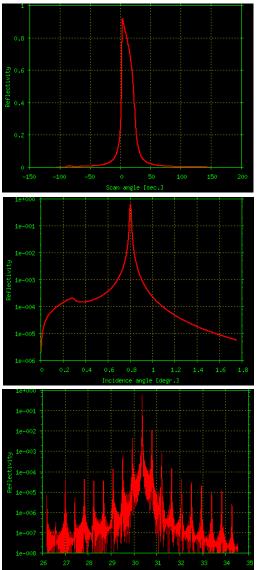

Based on 17 research papers; as of 2016/08/31 served 2,231,122 jobs.

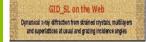


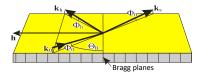
X-Server scope: GID_sI (diffraction)

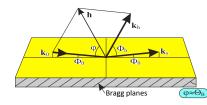
Grazing incidence diffraction

Any non-coplanar diffraction

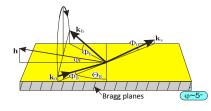

- Calculates Bragg diffraction from crystals with given profiles of normal lattice strains da(z)/a, dielectric susceptibilities χ₀(z), χ_h(z), and interface roughness height σ(z). The profiles are specified layer-by-layer, which allows for flexibility
- Takes into account specular reflection and refraction of X-rays at crystal surface and interfaces in multilayers
- Works for any Bragg-case geometry and scans around any axis
- Applications: X-ray optics (monochromators) and semiconductor material science; examples: Stepanov, *et.al.* PRB **57**, 4829 (1998);
 Stepanov & Forrest, J.Appl.Cryst. **41**, 958 (2008);
 Stoupin *et.al.* PRB 86, 054301 (2012)
- Limitations: No Laue cases, no bent crystals, no lateral strains, no instrumental convolutions


X-Server scope: GID_sI

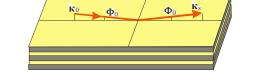

X-rays: • Wavelength(A) / • Energy(keV) = 1.540562 • Line=Cu-Ka1 💌 🖗 Polarizati	on=Sigma 💌
Crystal: GaAs 💌 🦻 X0h data (0.5-2.5A) 💌 Sigma= 0. A W0= 1. Wh= 1.	
Bragg Reflection: 4 0 Substrate da/a= 0.	
Geometry specified by: [5]. Surface orientation & condition of symmetric Bragg case	
Geometry parameter ([1,7]=incidence angle, [2,8]=exit angle, [6]=Bragg planes angle, [9]=g0/gh):	degr. V
Scan axis: [k0 x h]	ert scan axis
Scan limits: from -2000. to +2000. sec. Scan points= 401 Plot argument= incidence	e angle 💌
watch progress Submit Query (single click, please!)	
Top layer profile (optional): period= t= sigma= da/a= code= x= code2= x2= code3= x3= code4= x0= xh= xhdf= w0= wh= end period	Available codes: [?] Crystals: AlAs AlP AlSb
period=20	AlYO3 BaTiO3
t=70 code=AlAs sigma=2 da/a=a	Beril
end period	Beryllium
	[?] Non-crystals:
	A1203
Web input form	BeO
	BN
	Cr2O3 CsI
	Fluorite
	[2] Elements:



X-Server scope: TER_sl (specular reflection)



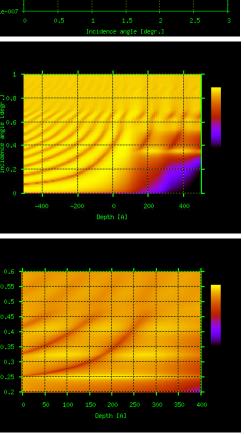
Grazing incidence diffraction



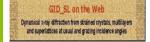
Extremely asymmetric diffraction

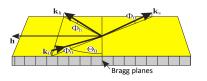
Any non-coplanar diffraction

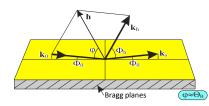
- Calculates X-ray specular reflection from plain mirrors and multilayers with given profiles of electronic density (dielectric susceptibility) χ₀(z) and interface roughness height σ(z) or transition layers.
- Converges faster than the Parratt recursive technique
- Also optionally calculates X-ray standing waves in multilayers
- **Applications**: X-ray optics (mirrors and multilayer mirrors and monochromators) and semiconductor material science
- · Limitations: no curved mirrors, no instrumental convolutions



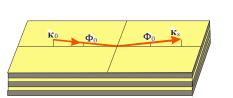
X-Server scope: TER_sl

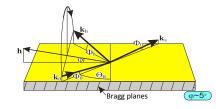

			$\Lambda = \Lambda$	
X-rays: • Wavelength(A) / • Energy(keV) = 1.540562 • Line=Cu-Ka1 • ? Pol	arization=Sigma 🗸	1e-001		
Substrate: Database code: GaAs X0h data (5-25keV; 0.5-2.5A)	-	1e-002		
○ Chemical formula: rho= g/cm^3		10-003		
Susceptibility x0 = () / format: x0=(Re(x0), Im(x0)); n	ote: x0=2*delta /	a 4 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3		····· \
x0 correction: $w0 = 1$. / this is used as: $x0 = w0 * x0 / 1$		1e-005		
Roughness: sigma = 4 . Angstrom OR Transition layer tr = 0 .	Angstrom	1e-006		
Incidence angle limits: from 0. to 3. degr. 💌 Scan points= ⁶⁰¹		1e-007		
, <u> </u>		0	0.5 1 Inc	. 1. cidence an
Start offset = 0. Angstrom End offset = 1000. Angstrom Number of offsets = 101 (max = 401) watch progress Submit Query (single click, please!)		1 - 8.0.7 - 8.0.0 8.0.7 		
Top layer profile (optional):	Available codes:	0.2		
t=20 w0=0.5 sigma=5 Isurface oxide, organic contamination or dust period=20 t=100 code=GaAs sigma=4 t=70 code=AlAs sigma=4 end period ▼	(use Copy/Paste) Ac Ag Al Al203	ii	400 -200	0 Depth [A]
Submit Query (same "Submit" action as above; single click, please!)	AlAs AlFe3 AlN AlP ▼	0.6 -		
		2.55		


Web input form



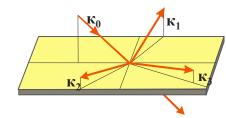
X-Server scope: BRL (multiple diffraction)





Grazing incidence diffraction

Extremely asymmetric diffraction



Any non-coplanar diffraction

TER SL on the Web

- BRL on the Web X-ray multiple Bragg/Laue diffraction
 - Calculates multiple Bragg diffraction from perfect plate-shaped crystals including the cases of X-rays grazing along the surface and Bragg angles close to 90° [Stepanov & Ulyanenkov, Acta Cryst. A50, 579 (1994)].
 - Takes into account specular reflection and refraction of X-rays at crystal surface for grazing X-rays only.
 - Helps to find multiple diffraction configurations and carry 2D Bragg scans around arbitrary axes
 - **Applications**: X-ray optics (multiple diffraction effects including polarization glitches in X-ray monochromators); examples: Sutter, *et.al.* J.Appl.Cryst. **49**, 1209 (2016).
 - Limitations: may loose precision for thick crystal plates, no instrumental convolutions, no lattice strains or curved crystals.

X-Server scope: BRL

|alpha/x0| = 0.105E-10

|alpha/x0| = 0.210E-10

|alpha/x0| = 0.700E-11

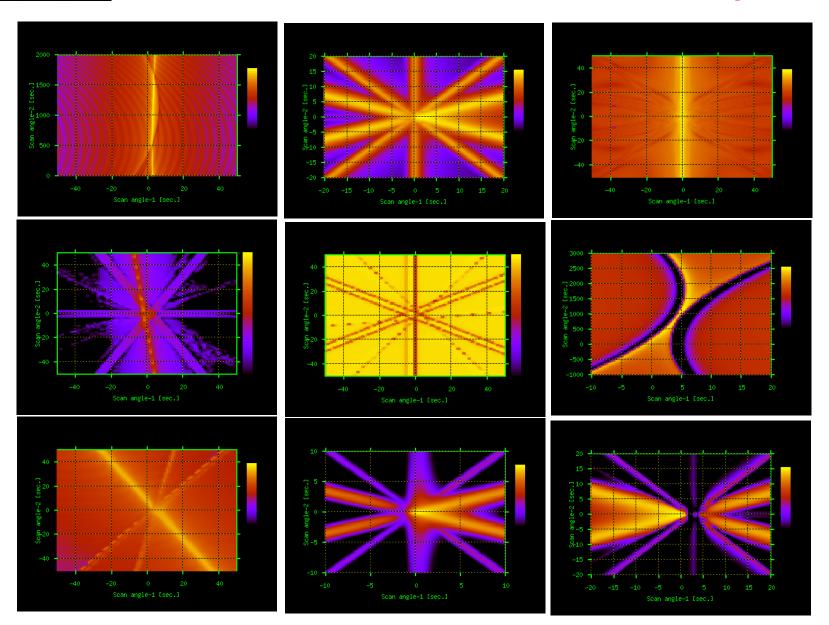
|alpha/x0| = 0.105E-10

|alpha/x0| = 0.210E-10|alpha/x0| = 0.350E-10

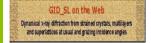
|alpha/x0| = 0.280E-10

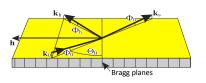
∽ Step-2

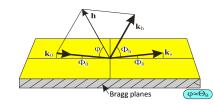
up to 8 planes if available):


Target:	
Crystal: Silicon ? Surface: Base plane: 1 1 1 Miscut direction: 1 -1 0 Miscut angle: 0. degr.	Crystal: Silicon Symmetry: Cubic X0h data: Automatic DB choice Surface: base plane=(1 1 1) miscut direction=(1 -1 0) miscut angle=0. degr. Thickness (microns): 100. X-rays: wavelength= 2.6344 A energy= 4.7063 keV line=*none* X-ray polarization: [1] Mixed (unpolarized) Angle to pi0 for mode [2]: 0
Reflections: 1 1 1 Reflex-1: 1 1 1 Reflex-2: 2 2 0 Index search range: 5 ✓ Min. Intensity filter: 0.1 (xh/x0 *100% >)	Scan limits (Theta1): from 50. to 50. points = 101Scan limits (Theta2): from 0. to 0. points = 1Scan axes: [1] Theta2 along sigma0Specified reflections:Reflex1 = (1 1 1)QB = 24.840 degr. $ xh/x0 = 52.895\%$ alpha/x0 = 0.105Reflex2 = (2 2 0)QB = 43.314 degr. $ xh/x0 = 60.859\%$ alpha/x0 = 0.210Reflex3 = (3 1 1)QB = 53.552 degr. $ xh/x0 = 39.863\%$ alpha/x0 = 0.700
X-rays: ○ Wavelength (A): ○ Energy (keV): ○ Characteristic line: Cu-Ka1 ♥ ? ○ Fixed by coplanar case ○ Fixed by Reflex-3: Database Options for dispersion corrections df1, df2: ○ Use X0h data (5-25 keV or 0.5-2.5 A) recommended ○ Use Henke data (0.01-30 keV or 0.4-1200 A) ○ Use Brennan-Cowan data (0.03-700 keV or 0.02-400 A)	Additional reflections search results (you can select up to 8 planes if available Searching from (-5 -5 -5) to (5 5 5) Intensity filter xh/x0 > 0.100% □ Reflex4 = (1 -1 1) QB = 24.840 degr. xh/x0 = 52.895% alpha/x0 = 0. □ Reflex5 = (2 -2 0) QB = 43.314 degr. xh/x0 = 60.859% alpha/x0 = 0. □ Reflex6 = (3 -1 1) QB = 53.552 degr. xh/x0 = 39.863% alpha/x0 = 0. □ Reflex7 = (4 0 0) QB = 75.964 degr. xh/x0 = 50.816% alpha/x0 = 0.
Submit Reset	← Step-1 Step-

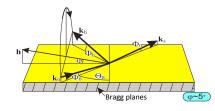
Web input forms


BRL on the Web X-ray multiple Bragg/Laue diffraction


X-Server scope: BRL

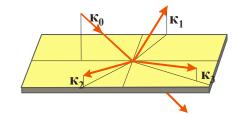


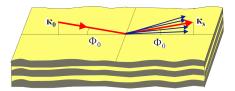
X-Server scope: TRDS_sl (roughness scattering)



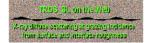
Grazing incidence diffraction

Extremely asymmetric diffraction

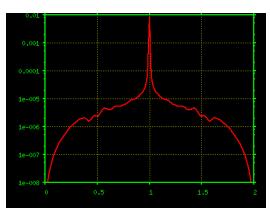

Φ

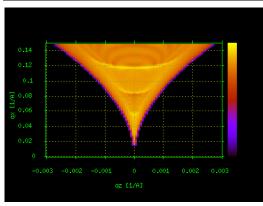


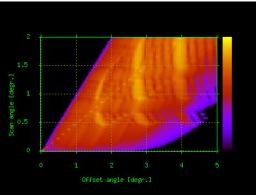
Any non-coplanar diffraction



- Calculates X-ray diffuse scattering from interface roughness in multilayers [Kaganer, Stepanov & Koehler, PRB. 52, 16369 (1995)].
- Implements modeling for 10 different types of roughness correlations between the layers.
- **Applications**: X-ray optics (X-ray mirrors and multilayer mirrors quality evaluation) and semiconductor material science.

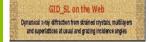


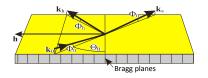


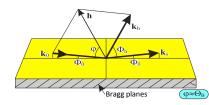

X-Server scope: TRDS_sl

-		
X-rays:	• Wavelength(A) / • • Energy(keV)	= 1.540562 C Line= Cu-Ka1 💌 💡 Polarization= Sigma 💌
Substrat	te: 💿 Database code: 🛛 GaAs	▼ 2 X0h data (5-25keV; 0.5-2.5A) ▼
	C Chemical formula:	rho= g/cm/3
	Susceptibility x0 = () / format: x0=(Re(x0), Im(x0)); note: x0=2*delta /
	x0 correction: w0 = 1.	/ this is used as: x0 = w/0 * x0 /
	Roughness: sigma = 3.	Angstrom / this is rms roughness height /
	<u>-</u>	
Scan Offset	Can: Q-scans at fixed 2Q limits: from limits: from limits: from 2 to at specular rod: C scattering	▼ Units for Q,2Q: degr. ▼ Units for qx,qz: 1/A ▼ points=201 points=1
Accelera Roughne	tors: Use K instead of exp(K)-1 ss: lateral correlation length=1000. angle of skew transfer=0.	Use semi-Born approximation A vertical correlation length= A jaggedness=1. degr.
Models:	, ,	
	• Completely correlated roughness	
	C Ming's model	
	C Lagally's model	lateral size of vertically correlated roughness=
	C Holy's model	
	C Spiller's model (*very slow!*)	
	Data for all Pukite's models:	miscut angle= degr. 💌 🗖 A dd affine roughness
	C Classic Pukite's model	
	C Smoothed Pukite's model	effective rms height of steps=
	C Pershan's model	terraces size spread=
Top layer period=	r profile (optional): ma= tr= code= rho= x= code2= x2	
		A1 A12O3

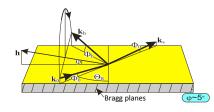
Web input form



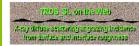


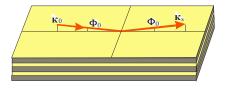


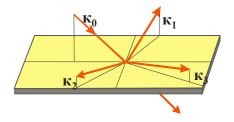
X-Server: MAG_sl (resonance magnetic scattering)

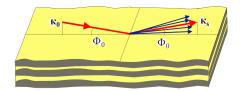


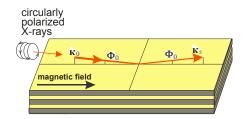
Grazing incidence diffraction

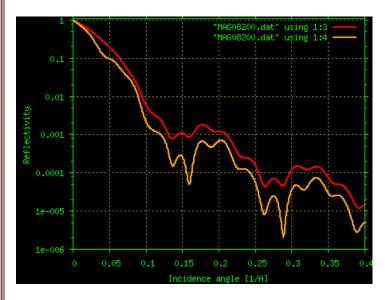

Extremely asymmetric diffraction


Any non-coplanar diffraction



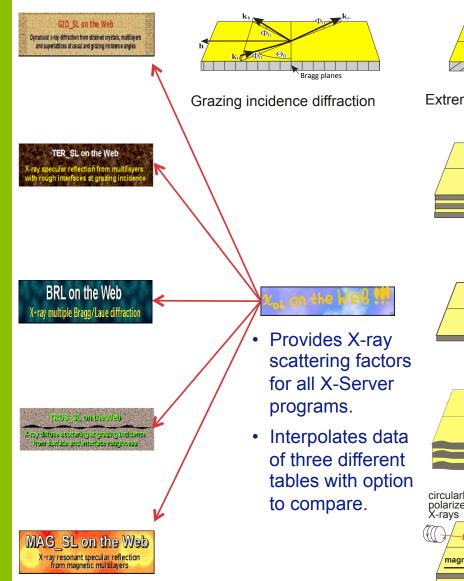


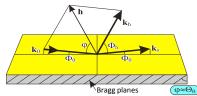



Calculates resonant X-ray reflectivity from magnetic multilayers [Stepanov & Sinha, PRB. **61**, 16369 (2000)].

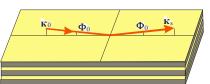
X-Server: MAG_sl

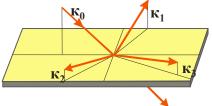
X-rays: C Wavelength(A) / • Energy(keV) = 7.243 C Line=	
Polarization: 4. Circular -	
Substrate: ● Database code: Silicon 💽 💡 XDh data (5-25keV; 0.5-2.5A)	•
C Chemical formula: rho= g/cm^3	
🔿 Susceptibility x0 = () / format: x0=(Re(x0), Im(x0)); note: x0=2*del	lta/
x0 correction: w0 = 1 . / this is used as: x0 = w0 * x0 /	
Roughness: sigma = 0. Angstrom OR Transition layer tr = 0. Angstro	m
Magnetic atoms 📀 share (01.) / 🖸 density (1/cm^3): 🛛	
Magnetic orientation $X = 0$ $Y = 0$ $Z = 0$	
Magnetic amplitudes $F10 = 0.0.$ $F11 = 0.0.$ $F1T = 0.0.$	
Scan (incidence angle or qz): from 0. to 4. degr. 💌 Scan points=4001	
Magnetic model: 💿 generic (may have numeric problems for hard x-rays) / 🔿 hard x-rays (E>6keV)	
watch programs Submit Query (single slick please)	
watch progress Submit Query (single click, please!)	
Top layer profile (optional): period=	Available codes:
t= sigma= tr= code= rho= x= code2= x2= code3= x3= code4= x0= w0=	(use Copy/Paste)
mshare= mdensity= mvector= F10= F11= F1T= end period	Ag
period=15	A1
code=Gd t=50 F11=(-0.22,9.35) F1T=(0.37,9.65) mshare=1 mvector=(1 0 0)	A1203 A1As
code=Fe t=35	AIP
end period	AlSb
	A1Y03
	Am
	Ar
	At
	Au
Submit Query (came "Submit" action as shower single click pleasel)	В
Submit Query (same "Submit" action as above; single click, please!)	B4C 💌
	<u>More details</u>

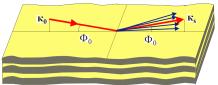


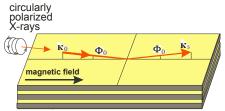

MAG_sl example: difference between reflectivity of circular-plus and circular-minus polarized X-rays at E=849eV from 47A capped Ni film.

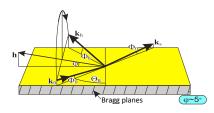
Web input form



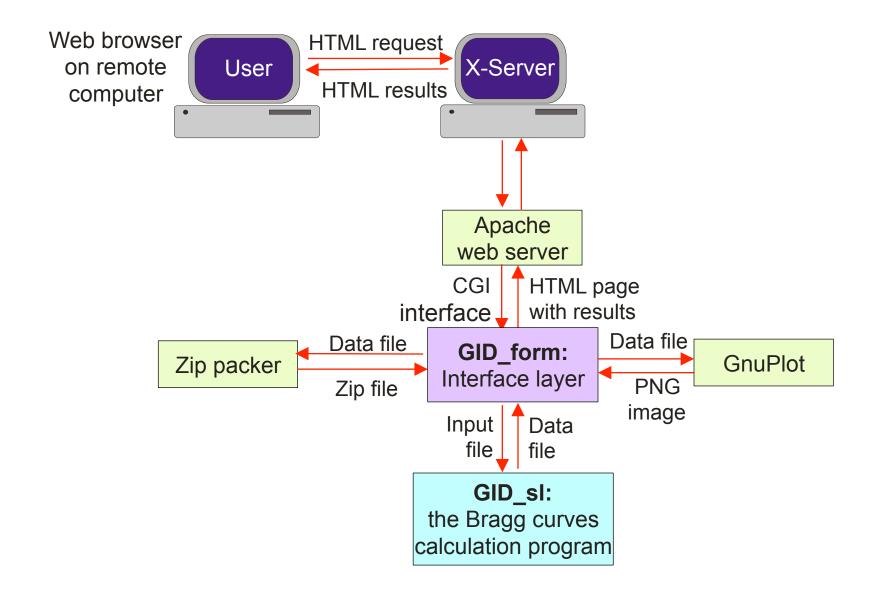

X-Server scope: X0h (structure factors)






Extremely asymmetric diffraction

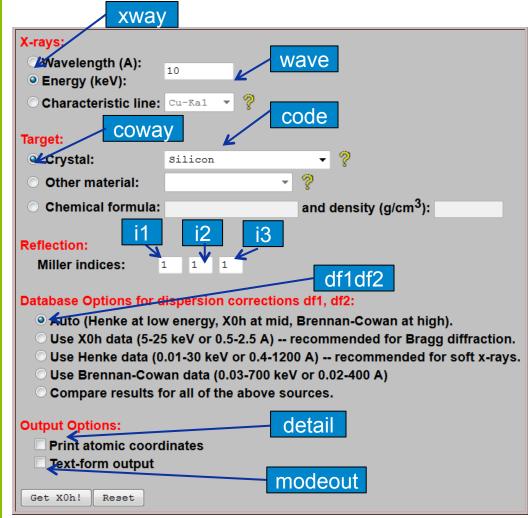
Any non-coplanar diffraction


X-Server scope: X0h

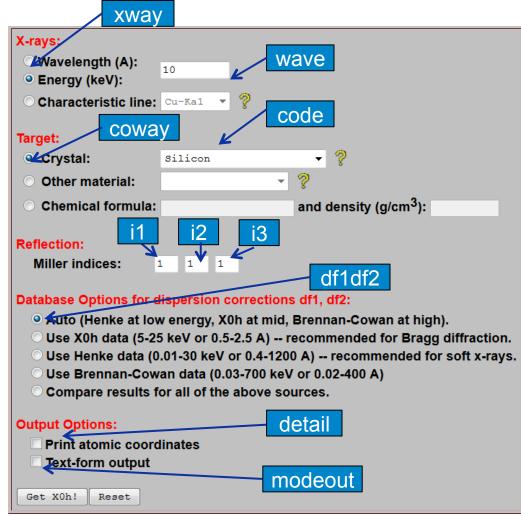
(-rays:	X-rays:
○ Wavelength (A):	C Wavelength (A):
• Energy (keV):	C Energy (keV):
○ Characteristic line: Cu-Ka1 💌 🦓	• Characteristic line: Cu-Ka1 💌 🦓
arget:	Crystal:
• Crystal: Silicon • ?	Select code Silicon 💽 💡
Other material:	
Chemical formula: and density (g/cm ³):	Bragg planes range:
	From: 1 0 0 To: 1 1 1
Reflection:	
Miller indices: 1 1 1	Bragg angle range:
batabase Options for dispersion corrections df1, df2:	From: 0. To: 30.
• Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high).	Intensity control:
Use X0h data (5-25 keV or 0.5-2.5 A) recommended for Bragg diffraction.	
 Use Henke data (0.01-30 keV or 0.4-1200 A) recommended for soft x-rays. Use Brennan-Cowan data (0.03-700 keV or 0.02-400 A) 	Minimum xh/x0 (%): ^{0.}
Compare results for all of the above sources.	Database option for dispersion corrections dfl, df2:
Compare results for an of the above sources.	• Use X0h data (5-25 keV or 0.5-2.5 A) recommended for Bragg diffraction.
Dutput Options:	🔿 Use Henke data (0.01-30 keV or 0.4-1200 A) recommended for soft x-rays.
Print atomic coordinates	O Use Brennan-Cowan data (0.03-700 keV or 0.02-400 A)
Text-form output	
	Find only those Bragg planes which make certain angles to the surface:
Get X0h! Reset	Surface plane indices: 1 0
	• Planes make angles from Thetal to Theta2
	C Planes make angles from Thetal to (Bragg_Angle - Theta2)
	O Planes make angles from (Bragg_Angle - Thetal) to (Bragg_Angle - Theta2)
	Thetal: 0. Theta2: 180.
	Find Planes! Reset

Web input forms

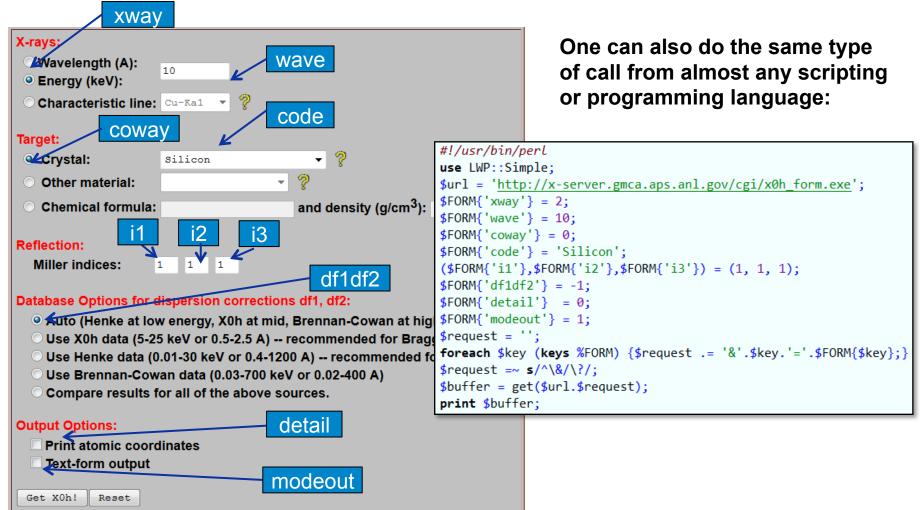
How X-Server works



X-rays:	
 ○ Wavelength (A): ○ Energy (keV): 	10
○ Characteristic line:	Cu-Kal 🔻 🦓
Target:	
Orystal:	Silicon 👻 🦓
Other material:	→ ?
Chemical formula:	and density (g/cm ³):
	1 1 1
 Auto (Henke at lov Use X0h data (5-2) Use Henke data (0) Use Brennan-Cow 	lispersion corrections df1, df2: w energy, X0h at mid, Brennan-Cowan at high). 5 keV or 0.5-2.5 A) recommended for Bragg diffraction. 0.01-30 keV or 0.4-1200 A) recommended for soft x-rays van data (0.03-700 keV or 0.02-400 A) for all of the above sources.
Output Options: Print atomic coord Text-form output	linates
Get X0h! Reset	


This is a web browser form of X0h. What happens when one clicks the "Get X0h!" button?

Behind each input on the web browser form there is a named parameter which the browser sends to X-Server upon clicking the "Get X0h!" button.

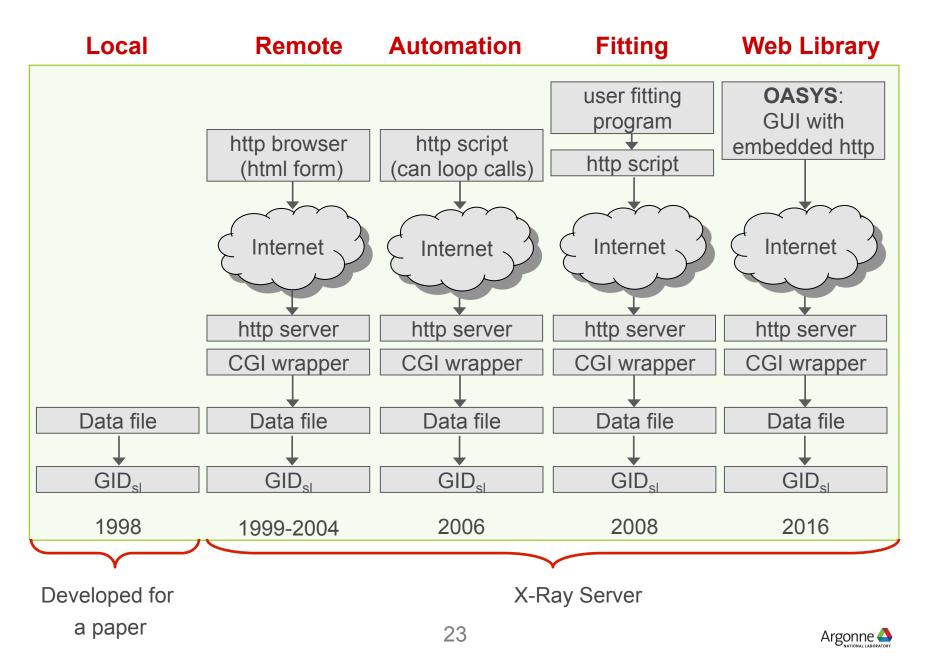


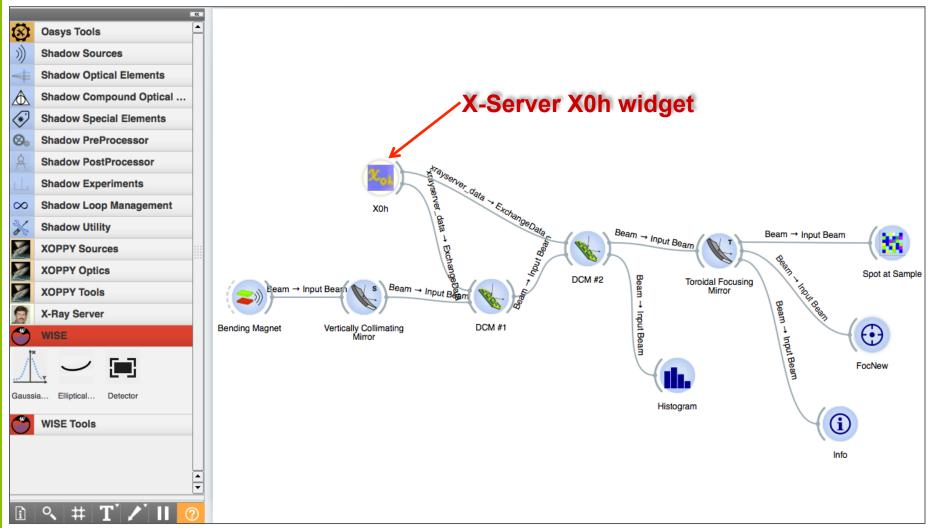
Then, one can simply use curl or other command-line program to submit the request:

curl <u>http://x-server.gmca.aps.anl.gov/cgi/x0h_form.exe?xway=2\&wave=10\&coway=0</u> \&code=Silicon\&i1=1\&i2=1\&i3=1 > results.file

Downloadable examples of X-Server access scripts

http://x-server.gmca.aps.anl.gov/automation.html


getX0h.pl	Script interfacing X0h	(equivalent to X0h form)
getGID.pl	Script interfacing GID_sI	(equivalent to <i>GID_sl</i> form)
getTER.pl	Script interfacing TER_sI	(equivalent to <i>TER_sl</i> form)
getTER_sw.plA script interfacing TER_sl and additionally requesting standing waves(equivalent to TER_sl form)		(equivalent to <i>TER_sl</i> form)


The scripts can be called from user's software written in any language using the **system** function. If one needs to vary a parameter, it can be passed to the script as a command line argument.

These scripts present a practical example of client software accessing the server programs. They are simple, but they **should be simple** to become useful since they address a wide auditory of physicists presumably unexperienced in web interfaces.

X-Server access evolution

X-Server access is embedded into Oasys and user does not need to do any programming; just add the X-Server widgets.

	NOh		
C X0h Request Form	X-ray Server Ouput Critical Angle for TER Darwin Curve (σ Pol.)	Darwin Curve (π Pol.)	
X-rays	Job ID: x1263437 X0h Results for 140.105.207.245 [2	07-245.elettra.trieste.it]:	
Characteristic line	Structure :	Silicon	
Target • Crystal Silicon •? • Other Material • Chemical Formula • Chemical Formula Reflection Miller indices	Unit cell constants (A) : Unit cell angles (degr.) : Poisson Ratio : Composition: Element N_sites (sites occupation) Element x,y,z :	Cubic 2.3293 5.4309 , 5.4309 , 5.4309 90.000 , 90.000 , 90.000 0.2800 Si 8 (1.000) 0.00000, 0.00000, 0.00000 0.50000, 0.50000, 0.00000 0.50000, 0.50000, 0.50000 0.25000, 0.25000, 0.75000 0.25000, 0.25000, 0.25000 0.75000, 0.25000, 0.25000 0.75000, 0.25000	
Database Options for dispersion corrections df1, df2 • Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high) • Use X0h data (5-25 keV or 0.5-2.5 A), recommended for Bragg diffraction	X-ray line : Wavelength (A) : Energy (keV) : Closest absorption edge (keV) :	none 1.5498 8. 1.84 (for element Si)	
O Use Henke data (0.01-30 keV or 0.4-1200 A),	Database for df ₁ , df ₂ :	*** Automatic DB choice ***	
recommended for soft x-rays Use Brennan-Cowan data (0.03-700 keV or 0.02-400 A) Compare results for all of the above sources Output Options	$\begin{array}{c} x_{r0}, x_{i0} (n = 1 + x_{r0}/2 + i^*x_{i0}/2):\\ delta, eta (n = 1 - delta - i^*eta):\\ Absorption factor (1/cm) and length (um):\\ Extinction length at TER (A):\\ Critical angle for TER (degr., mrad):\\ \end{array}$	-0.15310E-04, 0.35784E-06 0.76552E-05, -0.17892E-06 145.07, 68.931 63.030 0.22422, 3.9134	
Print atomic coordinates	Reflection :	(1 1 1)	
Get X0h!	Bragg angle (degr.) : Interplanar spacing (A) : sin(QB) , cos(QB) :	14.308 3.1355 0.24714, 0.96898 0.25505 3.0208	

Once the widget is added to the Oasys diagram, it allows to retrieve the structure factors ...

•••	NOh	
C X0h Request Form	X-ray Server Ouput Critical Angle for TER Darwin Curve (σ Pol.) Darwin Curve (π Pol.)	
X-rays Wavelength (Å) Energy (keV) 8.0		3
○ Characteristic line	Darwin Curve (π Pol.)	
Target Crystal Other Material Chemical Formula		
Reflection Miller indices 1 1 Database Options for dispersion corrections df1, df2 • Auto (Henke at low energy, X0h at mid, Brennan-Cowan at high) • Use X0h data (5-25 keV or 0.5-2.5 A), recommended for Bragg diffraction	Diffracted intensity	
Use Henke data (0.01-30 keV or 0.4-1200 A), recommended for soft x-rays Use Brennan-Cowan data (0.03-700 keV or 0.02-400 A) Compare results for all of the above sources Output Options Print atomic coordinates	10^{2} -15 -10 -5 0 5 10 15 20 25 Scan Angle [arcsec]	
Get X0h!		

... and associated Darwin curves for σ - and π - X-ray polarizations

Same way one can include the GID_sI and TER_sI widgets

• • •	GID_SL
GID_SL Request Form	Diffraction Intensity
Template Options Input Options	
X-rays specified by Wavelength (A v 1.540562 Polarization Sigma v	
Crystal Germanium	X-ray Diffraction Profile
Sigma 0.0 A W0 1.0 Wh 1.0	
Bragg Reflection 1 1 1 Substrate da/a 0.0	
Geom. by [5]. Surface orientation & condition of symmetric Bragg case	
angle, [9]=g0/gh) 0.0	
Surface plane ([1-5]) 1 1 1	
Miscut direction 1 -1 0 Miscut angle 0.0 degr. v	
Scan Type [k0 x h] 🔽 Invert axis	
Indices, if other scan axis	10 ⁻¹
Scan: From -60.0 To 60.0 sec. Points 401	
Plot argument scan angle 🗸	
	Diffracted Intensity
Approximations: alpha_max 1.00e+08 *lxhl	
Top layer profile (optional):	
? (sintax)	
	10 ⁻²
Available Codes: Crystals Non-Crystals Elements	
ADP AI203 AC	
AlAs B4C Ag AlFe3 BeO Al	
AIN BN Am Am AIP C18H37Cl3Si A Ar	-60 -40 -20 0 20 40 60 Choosen Scan Variable
AIP C18H37CISSi Ar Alpha-Fe C18H39O3P As Ar Alsh	
Submit Query!	

... and fetch their data. Note that the surface layer profile can be entered too

Why no server-side data fitting & instrument convolution?

X-rays: • Wavelength(A) / • Energy(keV) = 1.540562 • • Line=Cu-Kal 💌 🦓 Polariza	tion= Mixed 💌
Crystal: SiC-4H 💽 🥐 XOh data (0.5-2.5Å) 💌 Sigma=0. Å WO=1. Wh=1.	
Bragg Reflection: 0 0 12 Substrate da/a=0.	
Geometry specified by: angle of Bragg planes to surface ('+' for g0>gh) 🗸 , Value: 0. degr. 🗸	
Scan: from -14000 to +4000. sec. 🗸 Scan points: 401 Invert axis: 🗆 Plot argument:	incidence angle 💌
Approximations: alpha_max=1.E+8 * xh ?	
Submit Query (single click, please!)	
Top layer profile (optional): period= t= sigma= da/a= code= x= code2= x2= code3= x3= code4= x0= xh= xhdf= w0= wh= end period	Available codes: [?] Crystals: AlAs AlFe3
t=800 da/a = 0.00048 wh= 0.971610767 t=800 da/a = 0.00048128 wh= 0.97153615 t=800 da/a = 0.00048128 wh= 0.97133615 t=800 da/a = 0.00048512 wh= 0.971312334 t=800 da/a = 0.00049024 wh= 0.97123774 t=800 da/a = 0.0004902 wh= 0.970790297 t=800 da/a = 0.0004992 wh= 0.970790297 t=800 da/a = 0.000556 wh= 0.97019519 t=800 da/a = 0.000556 wh= 0.97019519 t=800 da/a = 0.00051328 wh= 0.96972591 t=800 da/a = 0.00053376 wh= 0.96972591 t=800 da/a = 0.00053376 wh= 0.968481789 t=800 da/a = 0.0005632 wh= 0.966772572 t=800 da/a = 0.0005632 wh= 0.965733657 t=800 da/a = 0.00058112 wh= 0.964547692	AlN AlP alpha-Fe AlSb AlYO3 AlYO3 AlYO3 AlYO3 B4C B4C B4C B4C B4C B4C B4C B4C B4C B4C
t=800 da/a = 0.000613 % wh= 0.963289201 t=800 da/a = 0.00065336 wh= 0.963289201 t=800 da/a = 0.00066536 wh= 0.963289201 t=800 da/a = 0.0007168 wh= 0.959670963 t=800 da/a = 0.0007168 wh= 0.957903727 t=800 da/a = 0.0007616 wh= 0.955332339 Submit Query (same "Submit" action as above; single click, please!)	[?] Elements: Ac Ag Al Am Ar As At Au

Providing Server-side fitting for all cases is non-practical: Too many parameters!

The form at the left is a typical material science application submitted from univ-poitiers.fr. The profile contains 72 lines, i.e. more than 200 parameters.

Also, account for the geometry or resolution of experiment would make the programs case-specific vs general.

Suggested solution: the Server programs can be used as a library providing Bragg or reflection curves to user's software doing fitting or instrument convolution.

Server overhead & handling of lengthy calculations

- The Server overhead was studied by Stepanov & Forrest, [J. Appl. Cryst. 41, 958 (2008] where X-ray Bragg reflection profiles from superlattices were fitted with the help of X-Server. The observed overhead was 2.9s per request, which in that case corresponded to less than 10%, but the percentage could be less or more depending on the duration of calculation.
- Most of the Server programs return results within several minutes or less. The only exception could be TRDS_sl where the length of calculations is proportional to the 4th power of the number of interfaces. When user submits a job, he can check the "watch progress" option. Then, the job ID is returned immediately and user can disconnect and come back later to check the progress and download the results:

Current restrictions & further plans

- □ GID_sI currently accounts for specular reflection of X-rays in all cases. It needs to do it for grazing X-rays only, which will result in up to 4x faster and digitally more stable calculations.
- □ GID_sI can be supplied with the printout of X-ray standing waves.
- □ TER_sl needs to be supplied with energy scans.
- BRL needs an update to the recursion matrix algorithm similar to that used in the other programs for more stable operation on thick crystals.
- Automatic submission of crystal structures is considered, but still questionable. Currently new structures can be added per users submissions (a template is provided at <u>http://x-server.gmca.aps.anl.gov/structure_submission_example.txt</u>). Then, I verify them with the space group generator and typically add to the X0h DB within a day. Unfortunately, the rate of mistakes in users submissions is very high and supplying the user community with mistaken structures does not look as a good idea. Most of calculations can be done by directly specifying the structure factors and thus bypassing the X0h DB, which is simply a convenience.

Conclusions

- We have a well refined resource for the calculations of X-ray dynamical diffraction, specular reflection and diffuse scattering with almost 20 years of online history.
- □ The main applications are X-ray optics and X-ray material science.
- To get most of this resource, e.g. implement data fitting, one needs to use tools beyond web browser.
- Examples are provided to write such tools on your own, but for some tasks one can use already developed tools like Oasys (to be released soon).
- ❑ Users are welcome to share the tools they developed: these tools can be hosted on the server for the benefit of the whole community same way as any user-submitted structures are available to everyone using the server.

Acknowledgements

X-Ray Server is hosted on a computer of the GM/CA@APS at Argonne National Laboratory. GM/CA@APS has been funded in whole or in part with Federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006).

I would like to personally thank the SOS Workshop organizers Dr. Luca Rebuffi, Dr. Marco Zangrando and Dr. Manuel Sanchez del Rio for inviting me to give this presentation.

I also thank many X-Ray Server users for providing their valuable feedback and suggestions and for submitting new structures.

