

School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

School on TANGO Controls system

Design patterns

Giacomo Strangolino

IT programmer at Elettra – Sincrotrone Trieste

Assistant professor 2010-2014, University of Trieste,
Faculty of engineering, principles of computer science

mailto: giacomo.strangolino@elettra.eu
http://www.tango-controls.org

http://www.tango-controls.org/

3
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

✔ Describe a problem;

✔ Describe a solution;

They help
✔ Find appropriate objects;

✔ Determine objects granularity and interface;

✔ Determine object dependencies;

✔ Make object oriented software reusable (inheritance vs.
composition) and evolvable;

4
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 1. Bridge
✔ Implementation switches at run time

✔ Abstractions and implementations can be extended by
subclassing.

✔ Different abstractions and implementations can be combined;

✔ Changes in implementation do not affect clients (binary
compatibility!!!);

✔ Hide implementation from clients

5
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 1. Bridge

6
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 2. Abstract factory
✔ Makes a system independent of how its products are created,
composed, represented;

✔ A system can be configured with one of multiple families of
products;

✔ A family of related products is designed to be used together;

✔ Provide a class library of products and reveal just their
interface, not implementations.

7
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 2. Abstract factory

8
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 2. Abstract factory

9
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 2. Abstract factory

10
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 3. Service locator
✔ Use a central registry known as service locator, which on
request returns the necessary objects to perform a task;

✔ It’s a simple run time linker: code can be added at run time;

✔ Applications can select and remove items from the s. locator
(replace a component with another one)

✔ Large sections of a library can be completely separated, the only
link being the service locator.

✔ Model an object which is singular in nature (logging, memory
management, audio device…)

✔ Can be applied to existing classes not designed around it (unlike
Singleton).

11
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 3. Service locator
✔ The registry must be unique (can be a bottleneck for concurrent
applications)

✔ The registry hides the class' dependencies;

✔ The registry can be a security vulnerability: it allows outsiders
to inject code into an application;

✔ Things placed in the registry are black boxes with regards to
the rest of the system: harder to detect and recover from their
errors

Use dependency injection!!

12
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 3. Service locator

class Audio /* service interface */
{

public:
virtual void playSound(int soundID) = 0;

 };

class ConsoleAudio : public Audio
{
public:
 virtual void playSound(int soundID)
 {
 // Play sound using console audio api...
 }
};

13
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 3. Service locator

class Locator /* implementation of the service locator */
{

public:
static Audio getAudio() { return mService; } /* does the locating */
static void provide(Audio * service) { mService = service; }

private:
static Audio *mService;

 };

class ConsoleAudio : public Audio
{
public:
 virtual void playSound(int soundID) { // Play sound using console audio api…}
};

14
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 3. Service locator

✔ Register a provider before anything tries to use the service:

ConsoleAudio *audio = new ConsoleAudio();
Locator::provide(audio);

✔ Get the instance of audio service to use:

MyClass::MyClass() {
Audio *audio = Locator::getAudio();
audio->playSound(VERY_LOUD_BANG);

}

✔ The code calling playSound() is unaware of the concrete ConsoleAudio
class.

15
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Example 4. Dependency injection

Class MyClass{

public:
MyClass (Audio *audio) { mAudio = audio; }

private:
Audio *mAudio;

 };

MyClass *myClass = new MyClass(new ConsoleAudio());

✔ Control is inverted with respect to Service locator;

✔ Easy to test MyClass, providing a dummy Audio implementation.

✔ External code (injector) constructs the service and calls the client to inject it.

A specific class instance
(service) is injected,

not created.

Dependency

16
School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

Design patterns

Bibliography

✔ E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns – Elements of Reusable Object-Oriented software,
Addison Wesley, 1998

✔ https://www.infoq.com/articles/Succeeding-Dependency-Injection

✔ http://gameprogrammingpatterns.com/service-locator.html

https://www.infoq.com/articles/Succeeding-Dependency-Injection

School on TANGO Control System, Trieste 4-8th July 2016Giacomo Strangolino

The End

● Thanks for your attention

mailto: giacomo.strangolino@elettra.trieste.it

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

