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Design patterns

✔ Describe a problem;

✔ Describe a solution;

They help
✔ Find appropriate objects;

✔ Determine objects granularity and interface;

✔ Determine object dependencies;

✔ Make object oriented software reusable (inheritance vs. 
composition) and evolvable;
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Design patterns

Example 1. Bridge
✔ Implementation switches at run time

✔ Abstractions and implementations can be extended by 
subclassing.

✔ Different abstractions and implementations can be combined;

✔ Changes in implementation do not affect clients (binary 
compatibility!!!);

✔ Hide implementation from clients
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Design patterns

Example 1. Bridge
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Design patterns

Example 2. Abstract factory
✔ Makes a system independent of how its products are created, 
composed, represented;

✔ A system can be configured with one of multiple families of 
products;

✔ A family of related products is designed to be used together;

✔ Provide a class library of products and reveal just their 
interface, not implementations.
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Design patterns

Example 2. Abstract factory
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Design patterns

Example 2. Abstract factory
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Design patterns

Example 2. Abstract factory
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Design patterns

Example 3. Service locator
✔ Use a central registry known as service locator, which on 
request returns the necessary objects to perform a task;

✔ It’s a simple run time linker: code can be added at run time;

✔ Applications can select and remove items from the s. locator 
(replace a component with another one)

✔ Large sections of a library can be completely separated, the only 
link being the service locator.

✔ Model an object which is singular in nature (logging, memory 
management, audio device…)

✔ Can be applied to existing classes not designed around it (unlike 
Singleton).
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Design patterns

Example 3. Service locator
✔ The registry must be unique (can be a bottleneck for concurrent 
applications)

✔ The registry hides the class' dependencies;

✔ The registry can be a security vulnerability: it allows outsiders 
to inject code into an application;

✔ Things placed in the registry are black boxes with regards to 
the rest of the system: harder to detect and recover from their 
errors

Use dependency injection!!
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Design patterns

Example 3. Service locator

class Audio /* service interface */
{

public:
virtual void playSound(int soundID) = 0;

 };

class ConsoleAudio : public Audio
{
public:
  virtual void playSound(int soundID)
  {
    // Play sound using console audio api...
  }
};
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Design patterns

Example 3. Service locator

class Locator /* implementation of the service locator */
{

public:
static Audio getAudio() { return mService;  } /* does the locating */
static void provide(Audio * service) { mService = service; }

private: 
static Audio *mService;

 };

class ConsoleAudio : public Audio
{
public:
  virtual void playSound(int soundID) { // Play sound using console audio api…}
};
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Design patterns

Example 3. Service locator

✔ Register a provider before anything tries to use the service:

ConsoleAudio *audio = new ConsoleAudio();
Locator::provide(audio);

✔ Get the instance of audio service to use:

MyClass::MyClass() {
Audio *audio = Locator::getAudio();
audio->playSound(VERY_LOUD_BANG); 

}

✔ The code calling playSound()  is unaware of the concrete ConsoleAudio 
class.
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Design patterns

Example 4. Dependency injection

Class MyClass{

public:
MyClass ( Audio *audio) { mAudio = audio;  } 

private: 
Audio *mAudio;

 };

MyClass *myClass = new MyClass(new ConsoleAudio() );

✔ Control is inverted with respect to Service locator;

✔ Easy to test MyClass, providing a dummy Audio implementation.

✔ External code (injector) constructs the service and calls the client to inject it.

A specific class instance
(service) is injected, 

not created.

Dependency
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Design patterns
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The End

●  Thanks for your attention

mailto: giacomo.strangolino@elettra.trieste.it
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