

Photons at the Next Generation Synchrotron Facilities: from Production to Delivery

ICTP, Trieste, Italy / 4 - 5 December 2017

### **MAX IV Accelerators Status**

Pedro F. Tavares on behalf of the MAX IV Accelerator Division

2017 Phangs Workshop



## Outlook

- The MAX IV Facility
- The MAX IV 3 GeV Ring
  - Main Parameters & Technological choices
  - Status: achieved performance highlights
    - Lattice Corretion: linear, coupling and non-linear
    - Orbit stability: long and short term
    - Bunch-By-Bunch Feedback and HCs
    - Top-up injection
    - Multipole Injection Kicker
- First user operations statistics
- Future Perspectives



# The MAX IV Accelerators

285

3 GeV ring 528 m circ, MBA, 330 pmrad

Short Pulse Facility

1.5 GeV Ring 96 m circ., DBA, 6 nmrad

> Linear accelerator (ca 250 m)

> > **Electron sources**

-

Picture by S.Werin

-

## MAX IV 3 GeV ring: 528 m, 330 pmrad



100 MHz RF Pasive HC



Circular, copper NEG-coated chambers

**Compact Magnets** 



MAXIV

## **3 GeV Ring – achieved performance**

- $\bullet \sim 200$  mA stored current multi-bunch
- ~ 9 mA stored current single-bunch
- > 6 A.h lifetime.current product
- $\gtrsim$  90% injection efficiency
- Emittances:  $\varepsilon_x = 339.4 \pm 30 \text{ pm rad}$ ;  $\varepsilon_y = 6.5 \pm 0.1 \text{ pm rad}$  (down to 3 pm rad observed)
- RMS orbit stability (up to 100 Hz) better than 1.3/5.5 % of beam size (H/V).
- Beta beats < ± 2 %, Residual Vertical Dispersion < 0. 6 mm RMS
- Bunch-by-Bunch feedback operational. Longitudinal kicker cavity
- Multipole Injection Kicker under commissioning



### **Beta-beat correction**



### Beat beats reduced from $\pm 20/25$ % to less than $\pm 2/1.5$ %.

Betatron Functions from LOCO fits-2017/04/17



### **Correction of horizontal dispersion beating**



BPM #

RMs deviation to model reduced from 15 mm to 3.5 mm



### **Correction of residual vertical dispersion**



40 dispersive skews reducing the vertical dispersion. Maximum strength is roughly half of the available.

BPM #

### RMS reduced from 5 mm to 0.6 mm



Vertical Dispersion [m]

### **Correction of betatron coupling**

40 non-dispersive skews reducing the coupling. Maximum strength is roughly half of the available.



Slide by Å.Andersson



### **Non-linear Lattice Optimization**

Thanks to Xiaobiao Huang for providing the RCDS code

RCDS (**Robust Conjugate Direction Search**) applied using all sextupole (5) and octpole families (3) as knobs and beam loss rate while kicking the beam as a proxy for dynamic aperture.



Data by M.Sjöström and D.K.Olsson







Position [µm]

Slow Orbit feedback ON



### **Orbit Stability – Short Term**



Integrated up to 100 Hz

 $\square$  Horizontal RMS < 710 nm  $\sim$  1.3 % of RMS beam size at BPM position

 $\Box$  Vertical RMS < 170 nm  $\sim$  5.5 % of RMS beam size at BPM Position



### **Collective Effects – BbB Feedback and HCs**

#### Longitudinal Plane (HCs tuned out)

#### Longitudinal Kicker Cavity



#### BbB Feedback ON



#### **Transverse Plane**

Striplines





BbB Feedback OFF







Pictures D.Olsson and

## **Insertion Devices**

#### Data by T. Ursby and D.Olsson

- 2 In-vacuum undulators
- 1 In-vacuum wiggler
- 2 EPUs



Biomax in-vac undulator 18 mm period 2 m length 4.2 mm min gap



## **Top-up Injection**

- Top-up with closed shutters and open ID gaps has been running since early on
- Top-up with ID gaps closed down to 4.5 mm and high injection efficiency (> 90%) since May 2017.



- Permit for top-up with open shutters in place since June 2017
- First tests with beamlines end of June 2017
- Top-up is the standard operation mode from Autumn 2017

## **Injection with closed ID gaps**



Control Scrapers used to protect the IDs.

Trimming of the transfer line trajectory and storage ring tunes allows recovery of > 90 % injection efficiency for gaps closed and scrapers at 2 mm from the beam.

### **Multipole Injection Kicker (MIK)**

- Objective: achieve near transparent top-up injection.
- Joint project with **SOLEIL** based on original concept from **BESSY**.
- First prototype installed in the 2017 shutdown.
- Injection with MIK (up to 200 mA) demonstrated.
- Perturbation to the stored beam reduced by a factor ~60.



Drawings by SOLEIL P.Lebasque P.Alexandre







MAXIV

### **Residual Orbit Perturbations**



Vertical Amplitude [µm]



X [mm]

### Accelerator Operations 1H - 2017

3 GeV Ring operation statistics

Jan to June 2017

Delivery Hours: 1024 Uptime: 92%



- Main causes of downtime:
  - Infrastructure
  - Beamline conditioning
  - RF system (power cuts)

- What we are doing about it:
  - New agreement with service providers
  - Review procedures
  - Rotating Converter
  - Cavity Conditioning Station



### Future pespectives – short term

- Multipole Kicker further trimming and second improved version
- Further Non-linear optics trimming
- Further commisioning/conditioning of harmonic cavities
- New Ids: 2 IVUs (CoSAXS, DanMAX) + 1 EPU (SoftiMAX)
- Slow orbit feedback improvements
- Fast orbit feedback



### MAX IV Accelerators RoadMap: 2016-2030



## **Brightness upgrade**

#### Data and plots by Hamed Tarawneh



#### 248 pm.rad



|                    | Baseline Lattice (328 pm.rad) | Lattice(248 pm.rad) | Change in strength  |
|--------------------|-------------------------------|---------------------|---------------------|
| QF1                | 4.030076                      | 4.535               | +12.5 %             |
| QF2                | 4.030076                      | 4.6314              | +14.9 %             |
| QFM                | 3.773995                      | 3.7947              | +0.6 %              |
| QFEND              | 3.653849                      | 3.5105              | -3.9 %              |
| QDEND              | -2.503663                     | -2.4302             | -2.9 %              |
| D0 (unit cell)     | -0.697 (all slices)           | -0.721              | +3.4 % (max. 4.2%)  |
| DS0 (matching cell | -0.870701 (all slices)        | -0.90480            | +1.65 % (max. 4.2%) |

### **Beyond MAX IV – An exercise**





| Parameter                       | Value   | Unit   |
|---------------------------------|---------|--------|
| Energy                          | 3       | GeV    |
| Number of periods               | 20      |        |
| Circumference                   | 528     | m      |
| Straight section length         | 5       | m      |
| Natural Emittance               | 16      | pm.rad |
| Natural energy spread           | 0.09    | %      |
| Horizontal Tune                 | 101.2   |        |
| Vertical Tune                   | 27.28   |        |
| Natural horizontal chromaticity | -100.21 |        |
| Natural vertical chromaticity   | -126.1  |        |



## High Gradient permanent magnet quadrupole

- 237 T/m in 11 mm bore diameter
- ±3 mm good field region
- Sm2Co17 permanent magnets
- Trim coils for ± 1.5 % adjustments



Design and images by Alexey Vorozhtsov





MAXIV

SECTION A-A

### Thank you for your attention !



### **Back up slides**



## **The Linear Accelerator**





- Warm s-band full energy linac
- Thermionic RF gun for ring injection
- Photo cathode RF gun for SPF
- Solid state stable modulators
- Bunch compressors : down to 100 fs pulse length



### **1.5 GeV Ring Commissioning Highlights & Timeline**



- Performance achieved so far
  - 250 mA stored current (multibunch)
  - 17 mA stored current (single-bunch)
  - $-~\sim 120$  A.h accumulated dose ,  $I^*\tau$  > 1.3 A.h
  - Longitudinally stable beam at 170 mA with Harmonic Cavities



### **Changes in BPM offsets after 5 weeks**





### **3 GeV Ring:** Vertical emittance reduction



 $\varepsilon_v$ =6.4 ± 1 pm.rad

Measured values after vertical dispersion and coupling correction.



### Accelerator highlights since last Board Meeting: Stability

• Agreement with LK regarding isolation of tram line



### 1.5 GeV Ring





### The MAX IV approach to implementation of the MBA



MAXIV

### **3 GeV Ring: Technical issues** Chamber cooling issues solved





### **Technical issues** Vacuum chambers locally hit by SR



In Ach 4 S1, replaced an absorber (outside mechanical tolerances). Test ongoing



In Ach 8 M1, a chamber was damaged little too much thermocouple glue. Replaced, test ongoing

Slide by Å. Andersson



### The MAX IV 3 GeV Lattice





### The 3 GeV Ring Lattice: Dipoles



## The 3 GeV Ring lattice: Quads

#### **Quadrupole Magnets:**

Gradients: 25 to 40 T/m



- All vertical focussing (along the arch) from the bends
- Qfends/Qdends for local ID compensation



### The 3 GeV Ring lattice: Sextupoles&Octupoles

#### **Non – Linear Corrections**



Octupoles

Minimization of Amplitude Dependent Tune Shifts



**The 3 GeV Ring Lattice** 



Pictures MAX IV DDR



### MAX IV 3 GeV Ring DC Magnets

• Each cell is realized as one mechanical unit containing all magnet elements.

•Each unit consists of a bottom and a top yoke half, machined out of one solid iron block, 2.3-3.4 m long.

- a U5 bottom half  $\rightarrow$
- $\downarrow$  an assembled U5

M2



U4



#### Slide by Martin Johansson

M1

U1

U2

U3

### Max IV 3 GeV Ring Vacuum System



## MAX IV 3 GeV ring RF System



100 MHz Main Cavities

Normal Conducting Copper Capacity loaded



SS UHF Transmitters

Standard commercial equipment

Passive 3<sup>rd</sup> Harmonic Cavities





### **Emittance Measurement**





 $\begin{array}{l} \beta_x = 1.26 \pm 0.02 \mbox{ m} \\ \beta_y = 15.66 \pm 0.08 \mbox{ m} \\ \eta_x = 3.59 \pm 0.06 \mbox{ mm} \\ \mbox{Errors computed based on 5} \\ \mbox{separate LOCO measurements} \end{array}$ 

 $\epsilon_x$ =339.4 ± 30 pm.rad  $\epsilon_v$ =15.7 ± 0.3 pm.rad



### **Changes Implemented by LOCO**

Plots by J.Sjögren



MAXIV

### Vacuum conditioning







