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Abstract

We investigate influence on the storage ring beam dy-
namics of the coherent Synchrotron Radiation (SR) self
fields produced by an electron bunch. We show that the
maximum energy gain in the RF cavity must far exceed the
energy loss of electrons due to the coherent SR.

INTRODUCTION

The energy ε of a particle in storage rings oscillates in
the vicinity of the equilibrium energyεs. The difference
between equilibrium and nonequilibrium energies is pro-
portional to the derivative of the particle’s phase dϕ/dt =
h(ωs − ωr):

∆ε = ε− εs =
εs

hKωs

dϕ

dt
, (1)

where K = −∂ lnωr/∂ ln ε = (αγ2

s − 1)/(γ2

s − 1) is self
phasing coefficient; α, the momentum compaction factor;
ϕ =

∫

ωr(t)dt, the particle’s phase; γ = ε/mc2, the rel-
ative energy; ωr = 2πf ; f , the revolution frequency of a
particle in the storage ring. Equilibrium values have lower
index s [1-3]. The radio frequency (RF) voltage in the cav-
ity’s gap is varying as V = Vrf cosωrf t, where ωrf is the
radio frequency; h, the subharmonic number of radio fre-
quency.

Balance of energy gained by an electron during the pe-
riod of a single revolution T = 1/f = C/c = 2πR(1 +
µ)/c in the RF cavity and lost due to synchrotron radiation
and Thomson scattering defines an equation for electron
phase oscillations in the storage ring:

dε

dt
=
eVrf cosϕ

T
− < P rad >, (2)

where < P rad >= dεrad/dt is the power of radiation
losses averaged over the length of the orbit; C, the length
of the orbit; R, the curvature radius of the particle orbit in
bending magnets; µ =

∑

i li/2πR, the ratio of the sum of
straight intervals li in the storage ring to the path length in
the bending magnets. The synchronous phase ϕsis defined
as dεs/dt = 0 or eVrf cosϕs =

〈

P rad
s

〉

T .
The spontaneous coherent SR doesn’t depend on the par-

ticle energy but depends on the particle position in the lon-
gitudinal direction, the shape of the beam and on the num-
ber of particles. For the Gauss longitudinal distribution one
can obtain:
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〈

P rad
coh (ϕ)

〉

= − 31/6Γ2 (2/3)Ne2c

21/3πR2/3σ
4/3

s (1 + µ)
∗

exp

[

−1

2

(

R (ϕ− ϕs) (1 + µ)

hσs

)2
]

∗

[1− 21/6
√
π

3
√

3Γ (2/3)

R (ϕ− ϕs) (1 + µ)

hσs
−

1

6

(

R (ϕ− ϕs) (1 + µ)

hσs

)2

+ . . .]. (3)

It is supposed here that the phase in the center of the
bunch is equal to synchronous phase ϕs, σs is the bunch
mean square length and Γ(2/3) = 1.35 [4].

If the laser beam is homogeneous and its transversal di-
mensions far exceed ones of the electron beam, the powers
of Thomson scattering radiation and spontaneous incoher-
ent SR obey the simple power dependence as functions of
energy< P rad

noncoh >=< P rad
s,noncoh > (ε/εs)

ki . The differ-
ence between radiated power of synchronous and nonsyn-
chronous particles is

< P rad
noncoh > − < P rad

s,noncoh >=
d < P rad

s,noncoh >

dε
∆ε =

ki < P rad
s,noncoh >

∆ε

εs
, (4)

where ki = 2 for the Thompson backscattering, ki = 1 for
the Raleigh backscattering by ions and ki = 1÷ 1.5 for the
SR.

Subtracting the power balance equation for synchronous
particles from the equation for nonsynchronous one (2) and
taking into account (1), (4) we obtain equation for phase
oscillations in the storage ring:

d2ϕ

dt2
+
ki < P rad

noncoh >

εs

dϕ

dt
−heω

2

sK

2πεs
[V (ϕ)−V (ϕs)] = 0,

(5)
where V (ϕ) = Vrf cosϕ − 2πR (1 + µ)/c

〈

P rad
coh (ϕ)

〉

.
The synchronous phase is determined by the equation
U(φs) = 0.

Incoherent synchrotron radiation and Thompson scatter-
ing cause slow damping of phase oscillations (the damping
time far exceeds the period of oscillations) and can be ne-
glected in the first approximation, so equation (5) can be
rewritten as:
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1

2

d

dt
(
dϕ

dt
)2 − heω2

sK

2πεs
[V (ϕ)− V (ϕs)]

dϕ

dt
= 0. (6)

The first integral, determining particle phase trajectories
behavior is

dϕ

dt
=

√

heω2
sK

πεs

∫

[V (ϕ)− V (ϕs)]dϕ. (7)

The coherent synchrotron radiation force acts similar
to the radio frequency accelerating field. The autophas-
ing force of the storage ring is defined by the deriva-
tive dV (ϕ)/dϕ. Thus, in accordance with (5), the reac-
tion of the coherent SR makes this force weaker. This
weakening reaches maximum when the phase equals ϕ =
ϕs +hσs/R (1 + µ). Therefore the stability of the electron
beam requires that the derivative dV (ϕ)/dϕ is negative in
the interval |ϕ − ϕs| < hσs/R(1 + µ). This phase range
corresponds to the stable oscillations of the majority of par-
ticles with amplitudes A ' σs. Using the formulas for the
power of the coherent SR (3) for a beam with Gauss longi-
tudinal distribution of particles one can find:

Vrf > Vrf,c =
2πR2 (1 + µ)

2
P rad

coh (ϕs)√
enhσs

, (8)

where en ≈ 2.72 is the natural logarithm foundation. In
reality the coherent SR can be neglected if the value Vrf is
2 ÷ 3 times higher than Vrf,c and sinϕs ≈ 1. The maxi-
mum energy gains in the RF cavity, according to (8), must
far exceed the energy loss of electrons due to the coherent
SR.

If the value P rad
coh is neglected, the equation (5) is trans-

formed into the equation of small amplitude phase oscilla-
tions:

d2ψ

dt2
+
kiP

rad
noncoh

εs

dψ

dt
+ Ω2ψ = 0, (9)

where Ψ = ϕ − ϕs << 1 and Ω =
ωs

√

qhKVrf sinϕs/2πεs.
The equation (9) has solutions that can be expressed as

ψ = ψm(t) cos Ω
′

t, where ψm = ψm,0 exp(−t/τph) is the
varying amplitude and

τph =
εs

P rad
noncoh

, (10)

the damping time, Ω
′

=
√

Ω2 + τ−2
s , the frequency of

small particle oscillations.

EXAMPLE
An electron storage ring has the radius R=50 cm, h=10,

σs= 1 cm, µ = 1, N = 1010,sinϕs ≈ 1. In this case
the losses of a synchronous particle per a revolution is
V rad

coh (ϕs)= 9.25 kev, Vrf > 114 kV. Thus for the sta-
ble storage ring operation the RF cavity voltage should be

much higher than the coherent radiation losses. The shield-
ing by the vacuum chamber can weaken this requirement
[5]. One should also note that the energy losses of a syn-
chronous electron per a revolution are approximately 22/3

times greater than average losses of electrons in the beam
(see Appendix).

APPENDIX
Suppose that a beam has small angular ∆θ ∼1/γ and

energy ∆ε/ε ∼1/γ spread (emittance). In such a case elec-
tromagnetic fields emitted by different particles are similar
to each other but have a temporal shift. The Fourier images
of these fields are:Ei,ω = E1,ω exp(i∆ϕi) i=1,2,3, ... N,
where the phase difference between waves emitted by the
first and the i-th particles is ∆ϕ = ω(t

′

i − t
′

1
) + k[r(t

′

i) −
r(t

′

1
)]. The moments of emission t and detection t′ are con-

nected as t = t′−R0/c−nr/c, R0 is the distance between
the points of emission and detection, k = ω · n/c, n is
a unit vector pointing in the direction of emission, r – the
vector lying in the plane perpendicular to the trajectory of
a particle. The time difference for ultrarelativistic particles
t
′

i − t
′

1
is connected with the space distance by a simple

relation c(t
′

i − t
′

1
) = zi − z1. Therefore the Fourier image

of the sum of fields of N particles Eω =
∑

i Ei,ω can be
written as (for the electrical field):

Eω = N

∞
∫

−∞

ρ(z, r)E1,ω exp[i∆ϕ(z, r)]dzdr, (11)

where ρ(z, r) – the density distribution of particles normal-
ized to unity.

If the transversal dimensions of the beam are small, the
integration in the equation (11) over transversal coordinate
r can be omitted:

Eω = N ·E1,ω

∞
∫

−∞

ρ(z) exp[i
2πz

λ
]dz. (12)

In this case the spectra-angular distribution of the emit-
ted energy

∂2εcoh

∂ω∂o
= cR2

0
|E1,ω|2 = N2

∂2ε1
∂ω∂o

s(ω), (13)

where ε1 is the energy of the radiation emitted by a single

particle, s (ω) =
∣

∣

∣

∫

∞

−∞
ρ (z) exp [i2πz/λ] dz

∣

∣

∣

2

, the spec-
tral radiation coherence factor, λ = 2πc/ω– the wave-
length of SR. The spectral energy distribution and the full
emitted energy can be found by integration of (13) over an-
gles

∂εcoh

∂ω
= N2

∂ε1
∂ω

s(ω) (14)

and over frequency
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εcoh = N2

∞
∫

0

∂ε1(ω)

∂ω
· s(ω) · dω. (15)

From (13) – (15) it follows that for a point-like
beam ρ(z) = δ(z) and therefore s(ω) = 1, εcoh =
N2

∫

∞

0
[∂ε1(ω)/∂ω]dω = N2ε1(ω), i.e. the energy emit-

ted by the beam is N2 times larger than the energy emitted
by a single particle.

If the beam’s motion is periodical one can introduce
average radiation power:P coh = f · εcoh, ∂P coh/∂ω =
f ·∂εcoh/∂ω, f = v/C – the revolution frequency, ν ≈ c–
the particle’s velocity and C is the perimeter of the orbit.

The values ∂ε1/∂ω and ∂P1/∂ω = f · ∂ε1/∂ω are
known. In particular, the spectral power of radiation is

∂P1

∂ξ
=

3
√

3e2cγ4

2RC
F (ξ), (16)

where β = v/c – the relative particle velocity, γ = ε/mc2–

the relative energy, F (ξ) = ξ
∞
∫

ξ

K5/3(ξ)dξ, ξ = ω/ωc,

ωc = 3βγ3c/2R – the critical radiation frequency, R– the
orbit radius in a bending magnet of the storage ring [6,7].
One can also calculate

∫

∞

0
F (ξ)dξ = 8π/9

√
3[6]. Thus

the full radiation power for one particle can be expressed
as:

P1 =
4π

3

e2cγ2

RC
. (17)

In the case under consideration the radiation is coherent
if the wavelength is longer than the length of the bunch i.e.
ξ << 1, K5/3 (ξ) ≈ 24/3Γ (2/3) ξ−5/3,

∞
∫

ξ

K5/3(ξ)dξ =

∞
∫

0

K5/3(ξ)dξ −
ξ

∫

0

K5/3(ξ)dξ

= π
√

3−
ξ

∫

0

K5/3(ξ)dξ, F (ξ) = 22/3Γ(2/3)ξ1/3.

Now the formula (16) can be written as

∂P1

∂ξ
=

3
√

3e2cγ4

24/3πR2(1 + µ)
Γ(

2

3
)ξ1/3. (18)

The spectral coherence factor s(ω) is determined by the
particle density distribution law ρ(z) and for the Gaussian
distribution

ρ(z) =
1√

2πσx

e
−z

2

2σ
2
x (19)

can be derived from equations (13) and (19) as s(ω) =
exp(−4π2σ2

x/λ
2) [8,9]. The value σx is the mean square

bunch length.
The full power of the spontaneous coherent SR, the av-

erage loss rate for a single particle and the losses over

a revolution can be calculated numerically using the for-
mula (15) and the expression P coh = f · εcoh. In the
special case when the coherent SR is dominated by the
low frequency radiation ξ << 1, taking into account (18)

and
∞
∫

0

k1/3 exp(−k2σ2

x)dk = Γ(2/3)/2σ
4/3

x , one can de-

rive that

P coh = c
dεcoh

dt
=

31/6Γ2(2/3)recN
2

2πR2/3σ
4/3

x (1 + λ)
mc2, (20)

The energy losses per a revolution are

∆εcoh =
dεcoh

dt
T =

31/6Γ2 (2/3) reR
1/3N2

σ
4/3

x

mc2

≈ 3.1 · 10−7R1/3N2/σ4/3

x [eV/revolution]. (21)

The formula (21) matches with the results of the first
work on the coherent SR [10], is 21/6 ≈ 1.12 times lower
than one in the reference [4] , 27/3 ≈ 5.04 times lower than
the value in the reference [11] and 28/3 ≈ 6.35 times lower
than one in the reference [12]. In the last reference the au-
thors used formula from the work of Shiff [10] and erred in
converting it to their definition of the valueσx. They multi-
plied the Shiff’s formula by the 24/3 instead of dividing by
it. In the remaining references the source of errors is un-
clear but more probably connected with the same mistake.

The coherence factor is decreasing for the wavelengths
λ ≥ λd = 2πσx or if ω ≥ ωd = c/σx. The expression (21)
is justified if the main part of the energy of the coherent SR
is emitted in the spectral range ω ≤ ωd ≈ ωc(ξ << 1)
i.e. when σx > λc/2π, where λc = 2πc/ωc = 4πR/3γ3.
The expression also (21) doesn’t take into consideration the
shielding of the beam by the vacuum chamber, which leads
to the weaker radiation for the wavelengths longer than the
vacuum chamber gap.

The vast majority of the energy is emitted in the angu-
lar range ∆θ ∼1/γ relative to the direction of the parti-
cle’s motion when k · r (t′) << k · r/γ. So, the condition
when one can neglect the transversal beam dimensions is
kd · r << γ or r << (λd/2π)γ = σxγ.
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