
NOVEL METHOD FOR PHASE-SPACE TOMOGRAPHY OF RAPIDLY 
EVOLVING E-BEAMS 

K. Chalut, Duke University, Department of Physics, Durham, NC 27708, U.S.A,  
V.N. Litvinenko, I.V. Pinayev, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

Abstract 

In this paper, we describe a new method for phase-
space tomography. This method allows one to restore 
phase space density using a small number of projections 
covering a limited angle of rotation or another linear 
transformation in the phase space. Practical applications 
of this method for phase-space tomography are discussed. 

INTRODUCTION 
Traditional methods of phase-space tomography, such as 
the Radon transform, require multiple, evenly spaced 
projections of exactly a 180° rotation angle in the phase-
space in order to reconstruct a frozen picture [1]. It means 
that reconstruction of the longitudinal phase space of the 
e-beam with Radon transforms require the evolution of 
the e-beam to be slow (adiabatic) on the time scale of 
synchrotron oscillations. Radon transforms also apply 
only to rotations, i.e. to a very small sub-group of linear 
transformations and projections used in accelerator 
physics and, generally, in imaging.  
 

 
 
Figure 1: Dual-sweep streak camera image of giant pulse. 
The camera recorded the time structure of the intensity of 
the light generated by the e-beam on multiple turns. The 
vertical sweep, which is synchronized with the revolution 
of the e-beam, is fast and has the full scale of 1.6 nsec. 
The horizontal sweep is slow and has the full scale of 500 
µsec. The trace seen at top is the FEL light. The main 
image is that of the spontaneous radiation of electron 
beam, which is identical to the beam time profile.  
 

In the giant pulse process in a storage ring FEL [2], 
the electron beam evolves dramatically and its energy 
spread increases by up to a factor of three within one 
synchrotron oscillation. For the giant pulse process, and 
other processes that evolve quickly, a new method of 
reconstruction is needed. We investigate two new 
methods of reconstruction that are not limited by 

observation angle, and work for any linear process, not 
just rotation. The only requirement is that we have some 
known set of linear projections. 

METHOD DESCRIPTION 

Projection matrix 
Suppose we have an arbitrary distribution of particles 
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 is the sub-set of spatial coordinates in the projection 

(image) space. Typical projection space used for imaging 
beam of charged particles has one or two dimensions. The 
projection matrix depends only upon the parameter α , 
which we use to identify projection.  

In our specific example we used a dual sweep streak 
camera (hence one dimensional images) for reconstruction 
of an evolution of electron beam density (F) in 
longitudinal phase space (two dimensions). But the 
method is applicable of any process with linear 
transformations and projections [3]. 

The longitudinal phase space of electron beam in a 
storage ring can described by two dimensionless 
coordinates ε = (E − E0) /σE 0  and ζ = t − t0( )/σ t 0 , 

where E and t are the energy and arrival time of an 
electron, Eo and to are, respectively, the energy and time 
of the synchronous electron, σE 0 and σ t 0  are 
corresponding RMS spreads of a stationary beam. 
Electron bunches under study are very short and the 
unperturbed motions of electrons in the longitudinal phase 
space can be presented as a simple rotation in which the 
angle is the synchrotron phase advance ϕ: 
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where Qs << 1 is synchrotron tune [4] and n is the turn 
number. The rotation causes a transformation of the phase 
space density governed by the Liouville theorem:  

Fn(ζ,ε)=F0(ζ ⋅cosϕn −ε⋅sinϕn,ε⋅cosϕn +ζ ⋅sinϕn)   (3) 
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At each turn of the e-beam around the ring the dual 
sweep streak camera records the time profile of the beam, 
i.e. the projection of the phase space density F(E,ζ) onto 
the time coordinate: 

I(ζ ⋅σto)ϕ = P ϕ( )⊗ Fo(ζ ,ε) = F(t /σto,ε)
−∞

∞

∫ ⋅ dε =

Fo(ζ ⋅cosϕn −ε⋅ sinϕn,ε⋅cosϕn +ζ ⋅ sinϕn)
−∞

∞

∫ ⋅ dε
 (4) 

Hence in our case the projection operator is completely 
defined by the synchrotron phase ϕ. This is still a 
description using continuous functions and coordinates. 
To make the problem computer friendly we must translate 
this problem into arrays and bits of information. Let’s 
consider that we have a distribution function defined on 
an N x N grid in the phase space, F=[Fij]. Our goal is now 
to find a way to extract information about the array F 
from the finite number of projections. 

We get our full set of linear projections from a dual-
sweep streak camera [5], which captures the synchrotron 
light from the electrons. A CCD camera digitizes the 
images from the streak camera. Let’s select a sub-set of J 
projections (along vertical lines in Fig. 1), which cover a 
small portion of a synchrotron period, and use M pixels 
from each image. The information contained in these 
projections has J x M bits. As long as J x M > N2 we have 
a chance to extract the information about the distribution 
function F=[fij]. 

The matrix form of equation (1) takes following form: 

I[ ] u
= P[ ] u,v

⋅ F[ ] v
;   u = N 2D;v = M ⋅ J     (5) 

where array I is a combination of ordered J projections, F 
is the array of ordered Fij, and P is the projection matrix, 
specific appearance of which we define later. In the case 
of the giant pulse process in a storage ring FEL, the 
relevant parameter for the projection matrix is the 
synchrotron phase, and knowing the synchrotron 
frequency and the time of each projection provides us 
with that knowledge.  

The problem is now reduced to a robust way of solving 
equation (1) and finding F with reasonable accuracy. The 
projection matrices are typically very large, non-square 
and singular, which makes singular value decomposition 
(SVD) method a natural choice for solving equation (1). 

SVD 
There is a wealth of information concerning SVD (see 

for instance [6]), but it is, in brief, the decomposition 
which, when inverted, satisfies the least-squares minimum 
criteria for the function  

2
FPI ⋅−=Φ     (6) 

One decomposes a matrix →P  TUDV , where the 

columns of U are the eigenvectors of TPP , the columns 

of V are the eigenvectors of PPT , and D is a diagonal 

matrix comprising the singular values (square root of the 

eigenvalues) of TPP . U and V are, by definition, 
orthogonal. This decomposition can be inverted 

(pseudoinverse) as TUVDP ++ = , where the diagonal 

of +D  is made up of the inverse of each of the singular 
values of D, in descending order, so long as the singular 
value in question is not zero. If the singular value of D is 

zero, then the corresponding element of +D  is also zero.  
If we assume P is a u ×v  matrix, then as u increases, 

some diagonal elements of +D  can be very large, and 
undue emphasis can be put on the corresponding singular 
values. This may cause a very high sensitivity of the 
method to errors and noise. Fortunately, SVD allows us to 
truncate the series at any desirable number of eigen values 
(which are all positive, or zero, and are numerated in 
descending order) with any K ���������	
: 

P+ =σ1E1 + ...σK EK = σ k Ek

k=1

K

∑ ; Ek = Uk Vk . (7) 

Truncation provides for robustness of this method and 
makes it less sensitive to the errors in the knowledge of 
projection matrix as well as to the noise in the images. 
The projection matrix is defined both by the type of 
projection (for example the angle of rotation), the size of 
the pixel in the image array and the type of discrete 
representation of a continuous distribution. Here we 
present two simple discrete models representation: pillbox 
and Gaussian. 

Pillbox representation 
This is a simple representation of the distribution by 

NxN pillboxes with Fij height located on an evenly spaced 
2D-grid. 

 
 
 
 
 
 
 

 

 

 

Figure 2: Element of projection matrix 31,634P of grid-box 

(4,5) on the 34th pixel when the grid is rotated on the angle 
of ϕ =6*π/25 around the origin is equal to the area of the 
intersection shaded in light yellow. 

The elements of the projection matrix are equal to the 
area of intersection of a box located on (i,j)-grid node 
with the lines indicating the boundaries of  the mth pixel. 
The grid rotates around the origin according to the angle ϕ 
of given projection. Figure 2 shows a specific example of 
such a cross-section: 

Pm, j ,i,l = P634,35 = Areaovelap      (8) 

 

 

 . ϕ=6*π/25 

m=34 

(4,5) 
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The pillbox representation has the advantage of giving the 
exact projection matrix, but the sharp corners inherent in 
the method do not provide for a smooth reconstruction. 
Hence, these sharp corners can be exaggerated in the 
presence of errors or/and noise. 

Gaussian representation 
It is a more elegant representation of a distributed 

function by a set of NxN Gaussians centered at the evenly 
spaced 2d-grid - see equation (9a). Each Gaussian has 
individual height (Fij for (i,j)th node) and a common r.m.s. 
width σ r , which plays the role of an adjustable 
parameter.  

         ),( li yx  

               
     mw    1+mw  

Figure 3:  The projection of a pixel onto a Gaussian node 
in the phase-space. 

The projection matrix is then found by projecting each 
Gaussian mode onto each pixel using eq. (4) and the pixel 
width (wm,wm+1): 

(a)  F(x,y) = Fi,l *e
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Solution 
When projection matrix is pseudo-inverted for a given 

choice of K (i.e. cut-off number of eigen vectors used in 
reconstruction) using eq. (7), the P+(K) gives the resulting 

elements of ilF  as: 

F[ ] = P+(K)[ ] ⋅ I[ ] .     (7’) 

In pillbox case these are the heights of the boxes on the 
grid with discontinuities on each grid edge. For Gaussian 
representation, the result is a smooth function (9a), whose 
scale of variations can be limited by increasing of σ r . 

Increase of σ r  to or above a size of a grid size will also 
lead to the reduction of the accuracy of the representation. 
Hence, there is an optimum σ r  (depending of the errors 
and the noise level), which provides a smooth but 
reasonable accurate representation of the real distribution 
function.  

THEORETICAL COMPARISON 
In order to study the theoretical aspects of the two 

representations, we created a theoretical construction, 
wherein we may compare a known function with our 
reconstruction. Here we present few selected results with 
the trial function a Gaussian with unit height, located off-
origin and having r.m.s. width of 2 grid size. Both 
representations were using 13x13 2D-drid with using grid 
size. Theoretical projections are 117 pixels for each image 
(an arbitrary number). We then use the SVD method 
described above for both representations. We evaluated 
the accuracy of reconstruction by subtracting the 
theoretical numbers from the reconstruction on the grid 
and comparing the norm of the difference with the norm 
of original function: 

100*
)(

)(
[%]

baselinenorm

baselinetionreconstrucnorm
Error

−=  

Figure 4 shows results of preliminary studies of the 
methods accuracy as function of the number of 
projections (spaced 10° apart). 

 
 
Figure 4: Error of reconstruction vs. # projections for 
pillbox and Gaussian representations. 
 
We did not succeed so far in accurate reconstructing of 
the trial functions using two projections and limited 
number of pixels ~ 100 - the errors are too large. We 
attribute it either to a need for a better image resolution 
(M >> 100) or to a possible “small bugs” in our programs. 
It is clear from our preliminary studies that the Gaussian 
representation provides a better reconstruction for smooth 
functions than the pillbox representation. We continue the 
studies of the analytical features of the method, including 
reconstruction of distributions with complex topology. 

ANALYSIS OF GIANT PULSES 
Figure 1 shows one of many measured dual sweep 

streak camera images of electron beam evolution in the 
Duke OK-4 storage ring FEL during the giant pulse 
process. During the above measurement the synchrotron 
frequency was 24.3 kHz, and the image shows evolution 
of the longitudinal distribution of the electron beam over 

Gaussian 
representation 
 
Pillbox 
representation 
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approximately 12 synchrotron oscillations. One can see 
that there is a transition region, where the length if the e-
bunch is evolving rapidly, and dramatically, in less than 
one synchrotron oscillation.  

The self-consistent theory of giant pulses [7] predicts 
strongly asymmetric, snail-like distribution [8] generated 
in the giant pulse process. Out new method allows us to 
reconstruct distributions from a limited number of 
projections, to observe the details of phase space 
dynamics during the giant pulse and to compare them 
with the theory. Preliminary results look promising, as 
seen in the pictures below. 

 

Figure 5: Reconstruction of e-beam distribution in 
equilibrium (before lasing) using 8 projections, 6.82° 
apart. Scale is arbitrary. 

 

Figure 6: A reconstruction using 8 projections, 6.81° 
apart, of the transition region. Noticeable double-hump is 
remarkably similar to the profile predicted by the theory 
[7,8]. 

The pictures in Figures 5 and 6 were reconstructed 
using the Gaussian representation. The reconstructions 
using the pillbox representation had many jagged peaks.  

The reconstructed distribution shown in Fig. 6  
qualitatively agrees with the theoretical prediction [7,8]. 
Clearly, there is room for more studies and comparisons. 
We plan to finish detailed comparison of a giant-pulse 

simulation using #vuvfel code [8] (with beam parameters 
taken from experimental runs) and to compare the 
simulated electron distributions with the reconstructions 
we get from dual-sweep streak camera images. The 
reconstruction passes the eye test, but the next step is to 
do a quantitative comparison. We stress that only 8 
projections, space 6.82° apart, were used to complete this 
reconstruction, for a total observation angle of 47.8°. 
There is reason to believe some improvements can be 
made on the code so that we can get a better 
reconstruction with an even smaller set of projections.  

CONCLUSIONS 
We developed a novel method of phase-space 

tomography, which theoretically requires only a full set of 
two or more linear projections. Currently, we are 
improving the model to see how low the limit can be 
pushed. Theoretical models indicate that, with limited 
resolution, we can get a good reconstruction (<5%) with a 
set of five projections. Perhaps we could get better 
reconstruction using greater resolution. We used 
experimental data from giant-pulse measurements at the 
Duke storage ring FEL to test the model, and saw some 
promising results.  

It is important that this method works for any linear 
projections, not only for rotations [3]. It has potential 
applications of this method for accelerator physics, 
medicine, military, and astronomy. Future work will be to 
further improve the model, compare it to giant-pulse 
simulations, and apply the method to other problems. 
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