Study of Coherence limits and chirp control in long pulse FEL oscillator

Y. Socol, A. Gover, A. Eliran, M. Volshonok, Y. Tel Aviv University

Pinhasi, B. Kapilevich, A. Yahalom, Y. Lurie, M. Kanter, M. Einat B. Litvak The College of Judea and Samaria, Ariel

Inner Cavity Electrostatic Accelerator FEL Configuration

Coherence Limits of FEL

Schawlow–Towns Equivalent Natural linewidth*:

$$\Delta f_{laser} = \frac{\left(\Delta f_{1/2}\right)^2}{I_0/e}$$

 $\left(\Delta f_{laser} = 10^{-2} Hz, for \qquad I_0 = 2A, \quad \Delta f_{1/2} = 10 MHz\right)$

Technical noise frequency instability** :

$$\Delta f_{tech} = \left[\left(\frac{\partial \varphi}{\partial V_b} \right)^2 \langle \left(\Delta V_b \right)^2 + \left(\frac{\partial \varphi}{\partial I_b} \right)^2 \langle \left(\Delta I_b \right)^2 \rangle \right] \Delta f_{1/2} \qquad \left(\varphi = \delta k_r L_w \right)$$
$$\frac{\Delta f_{tech}}{f_0} = 5 \cdot 10^{-7} \quad \left(for \qquad \Delta V_{brms} = 1 kV, \quad \Delta I_{brms} = 10 mA \right)$$

* A. Gover, A. Amir, L.R. Elias, PR A, <u>35</u>, 164 (1987)

** A. Abramovich, M. Canter, A. Gover, J. Sokolowski, Y. Yakover, Y. Pinhasi, I. Schnitzer, J. Shiloh, PRL <u>82</u>, 5257 (1997)

Effect of Voltage Drop: Chirp

FEL Frequency Dependence on in a

Waveguide Dispersive

Block-Diagram RF Measurements of FEL Radiation

Voltage Drop Effect: Mode Hoping

IF - signal

Numerically filtered IF signal amplitude

IF Signal at Single Mode Operation

Measured IF Signal $f_{IF} = |f(t) - f_{LO}|$

<u>f(t)>f_{LO}=86,4000 [MHz]</u>

<u>f(t)<f_Lo=86,402 [MHz]</u>

 $=> f(0)=86.401\pm1MHz$

Frequency Chirp and Power Decay of a single mode during voltage drop

Spectrum and Inherent Spectral Width

Inherent Spectrum Width 1.5 N 0.5 PMHM band, 1 0.27 MHz -1.5 16.5 17.5 17 18.5 18 19 time, µs

10µs window spectrogram after numerical elimination of linear chirp

1µs window spectrogram

Inherent Spectral Width

Planned Application of Controlled Chirp in Electrostatic Accelerator FEL

Scanning Single Pulse Spectroscopy

FEL Oscillator Frequency Stabilization

- 3. Plans to utilize chirp for :
 - (a) Single pulse scanning spectroscopy
 - (b) Phase locked loop frequency stabilization