

Vladimir N. Litvinenko and Ilan Ben Zvi

Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA

eRHIC - electron-ion colliders

Linac-ring eRHIC

Daniel Anderson¹, <u>Ilan Ben-Zvi^{1,2,4}</u>, Rama Calaga^{1,4}, Xiangyun Chang^{1,4}, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, <u>Vladimir Litvinenko</u>,^{1,4}, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko²

- (1)Collider-Accelerator
- (2) Physics Departments of BNL,
- (3)Bates Lab, MIT,
- (4) Department of Physics and Astronomy, SUNY @ Stony Brook

Main Components of ERL

See talk: THBOC04 by I. Ben-Zvi, Thursday @ 12:00

Super conducting RF photo-gun And high current 5-cell SC RF Cavity

Return

loop

RHIC	eRHIC	Light source option
Ring circumference [m]	3834	
Number of bunches	360	Presently, RHIC
Beam rep-rate [MHz]	28.15	operates for
Protons: number of bunches	360	*
Beam energy [GeV]	26 - 250	~ 28 weeks/year
Protons per bunch (max)	$2.0 \cdot 10^{11}$	The rest of the year
Normalized 96% emittance [µm]	14.5	the RHIC ion rings
RMS Bunch length [m]	0.2	
Gold ions: number of bunches	360	do not work 🗲
Beam energy [GeV/u]	50 - 100	Time for dedicated
Ions per bunch (max)	$2.0 \cdot 10^9$	LS run
Normalized 96% emittance [µm]	6	LS Tull
Electrons:		
Beam rep-rate [MHz]	28.15	703.75
Beam energy [GeV]	2 - 20	
γ, Relativistic factor	$3.9\ 10^3 - 3.9\ 1$	$\mathbf{0^4}$
RMS normalized emittance [µm]	5- 50	0.9
Beam emittance @ 20 GeV [Å]	1.25-12.5	0.18
Full transverse coherence <mark>λ[Å]</mark>		1.13
photon energy [keV]		11
RMS Bunch length [psec]	30	0.03 - 3
Electrons per bunch	$0.1 - 1.0 \cdot 1$	0^{11}
Charge per bunch [nC]	1.6 -16	0.7
Average e-beam current [A]	0.45	0.5

D.Kairan, V. Litvinenko (BNL) Z-system for merging low emittance beams

Chicane and Zigzag merging systems

Results of Parmela simulation for 1 nC e-bunch from the cathode to the end of the linac: black dashed curve is for a round beam passing without bends; blue curves are for a compensated chicane, red curves are for Zigzag merging system.

In contrast with <u>traditional chicane</u> where horizontal emittance suffers some growth as result of the bending trajectory, the <u>Z-system</u> (zigzag) the emittances are equal to each other and are very close to that attainable for the straight pass.

Beam parameters

Energy	20	GeV		Energy	10	GeV	
γ	3.91E+04			γ	1.96E+04		
Circumference	3834	m		Circumference	3834.00	m	
R, average	610.20	m		R, average	610.20	m	
% fill	65.55%			% fill	65.55%		
R magnets	400.00	m		R magnets	400.00	m	
В	1.67	kGs		В	0.83	kGs	
N TBA cells	150.00			N cells	150.00		
ε norm	9.50E-07	m rad		ε norm	9.50E-07	m rad	
8	0.243	Å rad		ε	0.485	Å	
Bunchlength	from 0.1 to 2	psec		Bunchlength	from 0.1 to 2	psec	
Damping time	1.45E-02	sec		Damping time	1.16E-01	sec	
Revolution time	1.28E-05	sec		Revolution time	1.28E-05	sec	
$\Delta \varepsilon \ (TBA)$	0.016	Å rad	6.70%	$\Delta \varepsilon \ (TBA)$	0.001	$ lap{A}$	0.10%
ε	0.259	Å rad		ε	0.486	Å	
RMS energy sprea	2.54E-05			RMS energy spread	4.49E-06		

Nuclear Instruments and Methods in Physics Research A304 (1991) 463-464

High gain distributed optical klystron

V.N. Litvinenko
$$1/4\pi\chi\rho > \sigma\gamma/\gamma$$
, $dX/d\tau = -iY\kappa$, $dY/d\tau = Z(1+B)\kappa$, κ -filling factor $dZ/d\tau = -X\kappa$,

$$\mu_{DOK} \cong \mu_{SASE} \cdot \kappa \cdot \sqrt[3]{1+B} \cdot e^{-\frac{(1+B)^2 \left(\frac{4\pi\sigma_{\gamma}L_G}{\gamma\lambda_w}\right)^2}{6}}$$

$$L_{G\ DOK} \cong L_{G} \cdot \left\{ e^{\frac{1}{4}} \cdot 2 \sqrt{\frac{4\pi L_{G} \sigma_{\gamma}}{\lambda_{w}} / \kappa^{3/2}} \right\}$$

R. Bonifacio, L. Narducci and C. Pellegrini, Opt. Commun 50 (1984) 373; $\eta = (\gamma - \gamma_0)/\gamma_0,$

X laser field, $Y = \langle e^{-i\psi_0} \vartheta \rangle$ bunching function, $Z = 1/\rho \langle e^{-i\psi_0} \eta \rangle$ energy deviation,

$$\begin{split} &\mathrm{d}\,X/\mathrm{d}\,\tau=\mathrm{i}\,\delta X-\mathrm{i}\,Y,\\ &\mathrm{d}\,Y/\mathrm{d}\,\tau=Z,\\ &\mathrm{d}\,Z/\mathrm{d}\,\tau=-X, \end{split} \qquad \mu^3-\delta\mu+1=0$$

$$\delta = 0 \qquad \qquad \mu_{\text{fel}} = \frac{1 - i\sqrt{3}}{2}$$

DOK reduces the gain length **2.2 fold** at 20 GeV and **5 fold** at 10 GeV for eRHIC 0.5- 1 Å FELs

Single pass Ångstrom-class FELs at eRHIC

Average lasing power is a problem!

@ 1Å (12 keV)
It is from 0.6 MW
to 1.3 MW

Energy, GeV	20		15		10	
Wavelength, Å	0.5	1	0.87	1.8	2	4
Bunch length, psec	0.2	0.2	0.27	0.27	0.4	0.4
Peak Current, kA	5	5	3.75	3.75	2.5	2.5
Wiggler period, cm	2.5	3	2.5	3	2.5	3
SASE gain length, m	7.5	4.3	5.5	3.3	3.7	2.4
SASE Saturation length, m	100	60	76	47	51	34
Saturation power, GW	7.7	19	6.4	14	4.5	9
DOK, gain length, m	3.5	1.4	1.5	.65	.51	.25
DOK, saturation length, m	47	19	21	9	7	3.5

Brightness Average

Peak

Oscillators and HGHG vs. SASE FELs

Precision vs. Crude Power

$$\Delta \lambda / \lambda = 10^{-6} \rightarrow @1 \text{Å} \ t_{coh} = 0.3 \ psec$$

OK-4 - 7 ·10⁻⁵ RMS; - 0.015 nm @ 218 nm

Lasing Line at 218.65 nm RMS linewidth: 0.0157 nm (including resolution)

TESLA - 5·10⁻³ RMS - 0.55 nm @ 108 nm

Optics-Free FEL Oscillator

- Use lower energy low current e-beam with low emittance and low energy spread for the feed-back
- The feed-back-beam is modulated and carries-on the modulation to the entrance of the FEL.
- Fully tunable! Line-width of oscillator

Conclusions

- High current 10-20 GeV ERL considered as a possible electron accelerator for eRHIC electron-hadron collider
- 10-20 GeV ERL will be very bright and powerful light source both in parasitic and dedicated modes of operation
- Sub-angstrom FEL can be successfully driven by the ERL in SASE or HGHG modes (L~100m), DOK or OFFO mode (~50m)

Work is supported by DoE

