
1 The scattering chamber

The scattering chamber of BEAR has been used for the first time for the
present measurements. Therefore part of the work reported in this thesis
was devoted to its setup.

The chamber features characteristics well beyond the requirements of
this work: it shows original aspects mainly to be exploited in the field of
XAS and light scattering according to the mission of BEAR. Consequently
a detailed description is presented, illustrating also those distinctive features
not directly related to the present work of thesis.

The experimental chamber provides the possibility of measuring both
photons and electrons: it is equipped with three light detector (photodiodes)
and one electron analyzer. The electron analyzer, and the photodiode fixed
on it, can move with two degrees of freedom, which, combined together,
allow it to be positioned in any point of the hemisphere above the sample. A
picture of the detector with the sample holder and the manipulator is shown
in Figure 1

Figure 1: Light and electron detector of the experimental chamber. It is visible
also the manipulator and the sample holder. The beam comes from the right side
of the picture.

Five different reference systems are defined:
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• ΩL is the system fixed in the laboratory. The positions are expressed
in terms of the three Cartesian coordinates xL, yL, and zL, choosing
xL parallel to the beam axis with positive direction the direction of
propagation of the light beam, zL vertical pointing upwards, and yL

according with the “right hand rule”.

• ΩC is fixed with the chamber, and can rotate, with respect to ΩL around
the beam axis in order to obtain the changing of the polarization of the
light impinging the sample. The angle describing the position of the
chamber is called ΨC and is defined 0 when the three axes xC , yC , and
zC are parallel to xL, yL, zL respectively.

• ΩM is fixed with the sample holder and is defined having always the yM

axis parallel to yC axis around which it can rotate describing an angle
θM . θM is strictly related to incidence angle of the light on the sample
(θM = π/2− θinc, being θinc the incidence angle). θM is zero when the
xM axis is parallel to xC and xL. The sample can be also rotated around
the zM axis (azimuthal angle φM) to be oriented in specific directions
with respect to the incident light. The translational movements of
the sample (xM , yM , and z − M) and the azimuthal angle φM are
driven in vacuum by piezo-inchworm motors (Burleigh, type UHVL-
025) (see Figure 3). Manipulator positions are read directly in vacuum
by absolute measurement systems, made by A.P.E. Research, Trieste)
based on position sensitive detector (PSD) technology (see Figure 3).

• ΩA is fixed with the detector (electron analyzer and/or photodiode);
the yA axis is parallel to yM and yC . The position of the detector is
described, rather than by xA, yA, or zA, by two angles: θA (polar angle)
is the angle describing the rotation of the analyzer shaft around the yA

axis, φA (azimuthal angle) is the rotation of the detector around an
zA axis, fixed on the shaft. θA = 0 when the zA axis is parallel to zC ,
φA = 0 when the electron analyzer is parallel to the yA axis and points
toward the positive direction.

• ΩS is a frame of reference fixed on the sample. It can be translated
in space and the axis zS, normal to the sample surface, can change
orientation, in order to become parallel to the zM axis (xS and yS

will accordingly change their direction). This movement, controlled
by means of a vacuum compatible screw driver, is useful to correct
systematic errors deriving from sample normal misalignments with the
scattering plane. Once made this corrections, the ΩS frame of reference
is considered indistinguishable from the ΩM system.
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These five reference systems are represented in Figure 2.

Figure 2: Definition of the frame of reference of the scattering chamber and
relative movable bodies including sample, manipulator’s shaft, detector’s shaft,
electron analyzer, and photon detector.

The movements of the analyzer (θA and φA), the polar angle of the sample
(θM) and the rotation of the whole chamber (angle ΨC) are driven by stepper
motors controlled by a computer.

Instead of thinking the experimental geometries referred to the frame of
reference of the chamber (ΩC) or of the laboratory (ΩL), it is generally better
to refer the geometrical parameters to the system of reference of the sample.
In this case the sample is fixed with the observer and the orientation of the
sample, the position of the detector, the direction and polarization of the
incoming light are described accordingly to the sample. We aim to find the
relations which connects these parameters, expressed in the ΩM system of
reference, with those parameter directly controlled by the computer.

We need to define three vectors:

1. a vector fixed with the sample, not parallel to its normal, whose projec-
tion on the XM -YM plane defines the sample azimuth φM ; this vector is
useful to correlate some particular feature of the sample (for instance a
particular cristallographic direction, some characteristic of the sample,
etc.) to the ΩM reference system.

2. the wave vector ~k of the incident electromagnetic field, and with it the
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Figure 3: The manipulator of the experimental chamber: on the left are indicated
the degrees of freedom and, on the right, the inchworm motors that drive the
manipulator movements.

directions of the horizontal and vertical components of the electromag-
netic field at the sample;

3. a vector ~t connecting the center of the scattering chamber with the
detector.

1.1 Azimuthal rotation of the sample and sample vec-
tor

Let ŝ be the unit vector of the projection on the XM , YM plane of the vector
~W , fixed with the sample and not parallel with the sample normal n̂S, chosen
as reference vector for the sample rotations around its normal. Indicating
with φM the angle between ŝ and the XM axis (see Figure 4), we have:

ŝ = cosφM ı̂M + sinφM ĵM

with ı̂M and ĵM the unit vectors of the axes xM and yM respectively.

1.2 The vectors of the incident electromagnetic field:
~k, ~EH and ~EV .

Aim of this paragraph is to give the components of the incident electromag-
netic field in the manipulator frame of reference, assuming the chamber at
an angular position ΨC (i.e. the chamber rotated of this angle around XC)
and the manipulator at an angular position θM (i.e. the manipulator rotated
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Figure 4: Definition of the azimuthal angle in the manipulator frame of reference.

of this angle around YC) together with the definition of the light vector ~k
(Figure 5).

The zeros of ΨC and θM are taken as follows:

• ΨC = 0 when yC is parallel to yL and zC is parallel to zL.

• θM = 0 when ZM axis is parallel to ZC (sample horizontal).

Their sense of rotation is taken according with rotation of a right hand
screw advancing along the positive direction of xC for ΨC and ofyC for θM .

The electromagnetic field is general elliptically polarized. In the labora-
tory reference system the electromagnetic wave propagates along the positive
direction of the xL axis. The elliptical polarity of the light results from the
superposition of the two motions along the zL and yL axes: be ~EH and
~EV the two components of the electric field along the yL and zL directions,
respectively.

We can write the component of ~EH and ~EV in the manipulator reference
frame ΩM :

Ex
H = −

∣∣∣ ~EH

∣∣∣ sin ΨC(−θM)

Ey
H =

∣∣∣ ~EH

∣∣∣ cos ΨC

Ez
H = −

∣∣∣ ~EH

∣∣∣ sin ΨC cos(−θM)


Ex

V =
∣∣∣ ~EV

∣∣∣ cos ΨC(−θM)

Ey
V =

∣∣∣ ~EV

∣∣∣ sin ΨC

Ez
V =

∣∣∣ ~EV

∣∣∣ cos ΨC cos(−θM)

(1)
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Figure 5: Scheme to calculate the components of the light vector ~k and the
electric field components in the manipulator frame of reference.

These equations shows that the chamber rotation ΨC changes the posi-
tion of the polarization ellipse with respect to the sample. In fact for the
limit case of horizontal linearly polarized field (left equations) for ΨC = 0,
the electric field is always perpendicular to zM and parallel to yM (s polarized
radiation), while for ΨC = π/2 the electric field has only xM and zM compo-
nents (p polarized radiation). Both sets of equations must be considered for
the elliptically polarized light.

Independently from the chamber rotation ΨC , the direction of the light,
i.e. the vector ~k, is always contained in the xM -yM plane. With reference to
the Figure 5, θk is the angle formed between the direction of incidence and
the zM axis. θk is zero when the light is impinging in the direction of the
zM axis (~k antiparallel to zM), and its sense of rotation is positive according
with a right hand screw advancing along the positive direction of the yM

axis. The two angles θk and θM are linked by the relation:

θk =
π

2
− θM . (2)

Consequently θk and φM , together with ΨC , completely define the light
incidence conditions (direction and polarization) on the sample.
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1.3 Detector position: the ~t vector

The detector features two degrees of angular freedom with respect to the
chamber’s body, θA and φA, as shown in Figure 2. The detector position
must be described in the manipulator frame of reference ΩM .

The position of a generic point P on a sphere of unit radius is uniquely
determined by giving two angles: ψ and θ (see Figure 6). We can define the
coordinates in the xyz-reference system by means of the following relations:

x = − sinψ cos θ (3a)

y = cosψ cos θ (3b)

z = sin θ (3c)

Figure 6: The position of a point on a sphere is defined by two angles. To derive
triangular formulae for the spherical triangle ABC, the spherical coordinates ψ,
θ, ψ′ and θ′ of the vertex C are expressed in terms of the sides and angles of the
triangle.

In the same way, we can define the angles ψ′ and θ′, which give the
position of P in the x′y′z′-frame. We obtain analogous relations:

x′ = − sinψ′ cos θ′ (4a)

y′ = cosψ′ cos θ′ (4b)

z′ = sin θ′ (4c)
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The second system of coordinates is obtained from the first one by a
rotation around the y axis (see Figure 7):

x′ = x cosχ+ z sinχ

y′ = y

z′ = z cosχ− x sinχ

or, in matrix form x′

y′

z′

 =

 cosχ 0 sinχ
0 1 0

− sinχ 0 cosχ

  x
y
z

 (5)

Figure 7: Coordinates of point P in the reference frame xyz e x′y′z′

Combining the equations (4) and (5), we obtain the relations between the
two reference systems:

− sinψ′ cos θ′ = − sinψ cos θ cosχ+ sin θ sinχ (6a)

cosψ′ cos θ′ = cosψ cos θ (6b)

sin θ′ = sinψ cos θ sinχ+ cosχ sin θ. (6c)
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Figure 8: The unit vector of the detector in the ΩM frame of reference and the
relation between the components in ΩM the angle θ′

A and φA of the detector
axes.

The particular case of the experimental chamber at BEAR is depicted
schematically in Figure 8. The position of the detector is described by the
vector ~t. In the manipulator frame of reference the analyzer goes around
circular trajectories described by the blue line, where θ′A is the angle between
the xM -yM plane and the plane of the trajectory. The value of θ′A is given by
the combination of the setting of the manipulator angle θM and the detector
angle θA:

θ′A = θA − θM (7)

Applying the angle definition expressed in Figure 6, compared with Figure
8, in the case of the experimental chamber at BEAR we have:

ψ = φt +
π

2
ψ′ = φA

θ =
π

2
− θt

θ′ = 0

χ = θ′A

(8)
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which, applied into equations (6), give:

− sinφA = − cos θ′A sin
(
φt +

π

2

)
cos

(π
2
− θt

)
+ sin θ′A sin

(π
2

)
(9a)

cosφA = cos
(
φt +

π

2

)
cos

(π
2
− θt

)
(9b)

0 = sin θ′A sin
(
φt +

π

2

)
cos

(π
2
− θt

)
+ cos θ′A sin

(π
2
− θt

)
(9c)

− sinφA = − cosφt sin θt cos θ′A + cos θt sin θ′A
cosφA = sinφt sin θt

0 = sin θt sin θ′A cosφt + cos θt cos θ′A

Solving for φA and θ′A, we obtain:

θ′A = − arctan

(
cot θt

cosφt

)
φA = arccos (sinφt sin θt)

(10)

The inverse transformations are obtained applying the inverse of matrix
(5):  cosχ 0 sinχ

0 1 0
− sinχ 0 cosχ

−1

=

cosχ 0 − sinχ
0 1 0

sinχ 0 cosχ

 (11)

We find

− sin
(
φt + π

2

)
cos

(
π
2
− θt

)
= − sinφA cos θ′A (12)

cos
(

π
2
− θt

)
cos

(
φt + π

2

)
= cosφA (13)

sin
(

π
2
− θt

)
= − sinφA sin θ′A (14)

that yields to

θt = arccos (− sinφA sin θ′A)

φt = arctan (cotφA cos θ′A)
(15)

We must fix the intervals for θt and φt. The movement of φt is limited by
the presence of the manipulator. The limits for φt are:

0 ≤ φt ≤
π

4
3π

4
≤ φt ≤ 2π
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and for θt is

0 ≤ θt ≤
π

2

Each movement must be expressed in terms of the angles θt and φt in the
system of reference of the sample.
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