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Introduction

The Conceptual Design Report of the FERMI@Elettra Project is the result of several years of incubation,
development and international collaboration.

The concept started with a first proposal presented by the Trieste team in the beginning of 2002,
reinforcing an already strong interaction between EU and USA synchrotron radiation laboratories, in
response to a call for proposals by the Italian Ministry of Research. The proposal has evolved into the
present Report that has been written in parallel with preliminary development activities. In particular,
we strongly acknowledge contributions from the design study activities of the sixth framework EU
program EUROFEL and the detailed physics and technological studies carried out together with
Lawrence Berkeley National Laboratory, the Massachusetts Institute of Technology and the Linac
Coherent Light Source (SLAC). The gratefully acknowledged help from many other expert teams, listed
in this report, also contributed to make the report a solid conceptual base for the construction of the
FERMI@Elettra facility.

The Free Electron Laser (FEL) activity at Sincrotrone Trieste has always been an important research and
development topic; a strong international community has in fact grown around the EU storage-ring-
FEL project, EUFELE, in operation at the ELETTRA storage ring, considered to a be the precursor to
FERMIL.

FERMI@Elettra has always been intended as a “User Facility” and as such it has involved, from the
very beginning, the user community in defining the project physics goals and therefore the fundamental
machine parameters and configurations. As a result, the facility design has been based on complex
and still evolving techniques, such as “seeding”, in order to ensure the high beam stability and
synchronization needed for fine spectroscopy measurements.

FERMI will be an “International Open Access” Facility to serve the most advanced experiments
proposed by the international user Communities. To further improve the overall service, and to ensure
the best use of resources available in Europe, we have proposed, at the EU level, to develop our facility
in coordination with other similar projects now in operation (FLASH, in Hamburg) or in the design and
development stage (4GLS in Daresbury, BESSY-FEL in Berlin, MAX-IV in Lund, SPARX in Frascati and
PSI-FEL in Villigen) and with previously existing facilities such as FELIX in Holland. The proposal is
now evolving into an integrated EU facility-Consortium, IRUVX, that has been selected as one of the
Facilities in the Roadmap of Research Infrastructures for Europe. The integration will, among others,
offer the advantage of possibly making the various facilities cover different parameter ranges, thus
helping extend the use of FEL generated Light over a much wider range of scientific fields.

The construction of FERMI has started thanks to the financial support of the Italian National and
Regional Governments as well as of a project-financing supported loan from the European Investment
Bank.

The first light is planned to be delivered to the users in 2009, thus translating the concepts of this CDR
into practice!

Carlo Rizzuto
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Chapter 1 - Executive Summary

1 Ex‘écﬁ"c\ive Summary

1.1 Introduction

Synchrotron radiation is a fundamental and indispensable tool for the study of materials which
encompasses a wide spectrum of sciences, technologies and applications, from life sciences to nano-
technologies, from environmental sciences and geochemistry to archaeology.

Synchrotron radiation has seen an explosive growth in its application to research and development
and in the number of facilities built to serve its users, covering a large range of radiation wavelengths,
extending from the infrared down to hard X-rays, in the form of radiation pulses with time duration
down to the few picoseconds range. The number of facilities in operation worldwide is close to eighty,
serving tens of thousands of users per year.

The main figure of merit of radiation sources is brilliance, which defines the intensity of radiation, within
a given bandwidth around the desired wavelength, that can be focused unto a sample of given area.
Typical brilliance values for the highest performance “third generation” light sources are around 10" to
10% photons/s/mm?/mrad?/0.1% bandwidth. Another important characteristic is the pulse duration:
ultra short, sub-picosecond radiation pulses are needed to open up the new investigation field covering
not only the structure of a sample but also its dynamics during irradiation.

A strong need has emerged over the last few years, for a source of radiation with extremely high
brilliance, close to full coherence, a bandwidth approaching the Fourier limit and with a stable and
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well characterized temporal structure in the femtosecond and picosecond time domain. Such a source
is the single-pass Free Electron Laser (FEL) that has the potential for producing light pulses with peak
brilliance many orders of magnitude higher than that generated in present third generation sources
and with sub-picosecond pulse lengths, as shown in Figure 1.1.1 [see also Chapter 3] in which the peak
brightness (brilliance) and pulse duration performance of different types of X-ray sources is compared
(see Table 1.1.1).
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10" Sourcess Figure 1.1.1:
]0]53 Peak  brightness (brilliance) versus
00 10 1 01 001 0001 pulse duration of various types of
FWHM X-Ray Pulse Duration [ps] radiation sources.

The investigation domain opened by the new sources cover essentially all basic science fields giving
access to explorations of matter in practically unexplored regimes. The scientific opportunities will in
fact impact studies of a large number of disciplines ranging from materials and biomaterials sciences,
nanosciences, plasma physics, molecular and cluster femto- and nano- physics and chemistry, as well
as having various connections to life, environmental, astrophysical and earth sciences. Asimportant as
the immediate applications is the promise of new discoveries, studies and techniques that will emerge
as this new tool is fully exploited. The potential is there to further develop technologies ranging from
micro-electronics to energy. A more extensive presentation of the science case is given in Chapter 3.

The FERMI single pass FEL project at the ELETTRA Laboratory of Sincrotrone Trieste (ST) is one of the
FEL based European projects, designed to become the international user facility in Italy for scientific
investigations, with ultra high brilliance X-ray pulses, of ultra-fast and ultra-high resolution processes
in material science and physical biosciences.
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1.2 The Fermi FEL Facility

1.2.1  General Layout

The FERMI single-pass FEL facility will be driven by the present ELETTRA injector S-band linac,
upgraded by the addition of seven accelerating sections' to bring its top energy to 1.2 GeV and of a new
photoinjector, low emittance electron source. The Linac repetition rate will also be ramped up to from
10 Hz to 50 Hz. Injection into ELETTRA will be taken up by a new full energy booster synchrotron
scheduled to become operational at the end of 2007 [1].

The upgraded Linac 1.2 GeV electron beam energy plus a complex of state-of-the-art undulators
will allow FERMI to cover the 100-40 nm wavelength region in a first phase (FEL-1) and to reach down
to 10 nm in a second, later phase (FEL-2). User experiments will be housed in the new experimental hall
shown in Figure 1.2.1, located next to the ELETTRA light source [2], thus allowing for the possibility of
eventually bringing ELETTRA photon beams into it to perform multi-beam experiments.

A general layout of the facility is shown in Figure 1.2.1. The accelerator and FEL complex comprises the
following parts: a photoinjector and two short linac sections generating a bright, ~ 100 MeV electron
beam, the main linear accelerator in which the beam is time-compressed and accelerated to ~ 1.2
GeV, the system to transport the beam to the undulators, the undulator complex generating the FEL
radiation, the photon beamlines taking the radiation from the undulator to the experimental area and
the experimental area itself. After leaving the undulators, while the FEL radiation is transported to the
experimental areas, the electron beam is brought to a beam dump by a sequence of bending magnets.
The FEL radiation transport system, designed to handle the high peak power of up to 10 GW in the sub-
ps long pulse, includes a differentially pumped windowless vacuum system and low-Z material beam-
line components operating at grazing incidence angles. The photon beam transport system incorporates
all provisions and equipment necessary to ensure pulse length and energy resolution preservation,
monochromatization, source shift compensation, beam splitting and focusing into the experimental
chamber.

= - N

e

= =] <

The Main Linear Accelaralor The Undulator Hall The Experimental Area

Figure 1.2.1:
FERMI General layout.

As above mentioned, the FEL facility operates two different free electron laser radiation sources, FEL-1
and FEL-2, to be realized in two phases. FEL-1, to be implemented first, is designed to operate in the
time domain (short pulses) with two complementary modes: a high stability and a high intensity one.

ICourtesy of CERN
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FEL-2, to be implemented in the second phase, is designed to operate with relatively long photon pulses,
in the frequency domain to provide the highest energy resolution, i.e. the narrowest bandwidth.

The initial FERMI science program, by which the design choices have been guided, is structured to reach
its final performance from the very start with diverse experiments and increasingly more demanding
photon beam parameters (see Tables 3.1.2 through 3.1.7, Chapter 3), thus allowing high quality
experiments to be performed from the very beginning of commissioning of both FEL-1 and FEL-2.

The classes of planned experiments, temporally ordered, are: single shot, high peak brightness
experiments, pump-probe experiments and non-linear spectroscopy high-energy resolution experiments
in both the time and the frequency domain.

The “roadmap” showing in more detail how the various stages of facility performance optimization will
open up diverse experimental opportunities is shown in Figure 1.2.2.

High Peak Brilliance Experiments e

Single Shot Microscopy " First Shot
Warm Maotter Studies Experiment
Statistical & Fourier Opfics .

Time-structure Controlled and Comaoning
Narrow Bandwidth Experiments " Experiments
Pump-Probe in the time domain i

Time-structure Controlled e
Narrow Bandwidth ‘ Advanced Users

Intensity Stable Experiments . Experiments

Scattering Experiments in the SRS |

Frequency Domain

TR s i [rm——
Aftosecond

Controlled Experiments ' Experiments

Pump-Probe in the fime domain

Figure 1.2.2:
Accessible experiments as the Fermi
performance is gradually improved.

1.2.2  FEL Operation: Seeding Mechanism and Main FEL Parameters

The quite novel “seeding” scheme by which FEL-1 is designed to produce radiation down to 40 nm
wavelength, is the following. An initial “seed” signal, provided by a conventional, high peak power
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pulsed laser operating at wavelengths in the region 240-300 nm at the electron bunches repetition
frequency, is made to overlap the electron beam in a first undulator magnet called the modulator. The
laser field modulates the electron bunch energy at its own frequency and the modulation is converted
to bunch charge spatial modulation by passing the electrons through a dispersive section.

The frequency spectrum of the so obtained charge modulated electron bunch contains higher harmonics
of the seed laser wavelength so that intense coherent FEL radiation at the frequency of one of these
harmonics can be finally obtained by passing the modulated bunch through a second set of undulators
(the “radiator”) tuned to select and amplify the desired harmonic.

For the FEL-2 beamline to reach the shortest foreseen design wavelength of 10 nm, a second undulator
stage must be added to a first stage similar to FEL-1, consisting of a modulator plus a dispersive section
plus a radiator, tuned to and seeded by the first stage output radiation.

One should note that the nature of the mechanism, with an external laser driving the FEL process, is
particularly suitable for pump/probe synchronization at time scales well below 1 picosecond.

FERMI's resulting main parameters, collected in Table 1.2.1, were defined based on theoretical studies
and simulations. A cornerstone has been provided by “start-to-end” simulations, in which the electron
beam is tracked from the photocathode, through the linac and all the way through the FEL process.
Exhaustive studies have also been carried out to estimate the effect of foreseen random perturbations
and jitters of the accelerator and of the FEL parameters.

Table 1.2.1: Nominal electron beam and FEL parameters.

Parameters Value at 40 nm Value at 10 nm Units
Electron beam energy | 1.2 1.2 GeV

Peak current 800 500 A
Emittance (slice) 1.5 1.5 um, rms
Energy spread (slice) | 150 150 keV
Bunch duration 700 1400 fs, FWHM
Repetition rate 10 10 Hz

FEL peak power 2.5 0.6 GW

FEL pulse duration 200 400 fs, FWHM
# of photons/pulse 10 10%2

Bandwidth 17 4 meV
Brilliance ~10%! ~10%1 ph/s/mm?/mrad?/0.1%BW
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Another novel paramount feature of FERMI is that both FEL-1 and FEL-2 are designed to provide, at
all design wavelengths, beam polarization ranging from linear-horizontal to circular to linear-vertical,
continuously tunable by changing the undulator gap at constant electron beam energy.

The FEL-1 radiator and the final radiator section in FEL-2 have therefore been chosen to be of the APPLE-
I, pure permanent magnet type. For the modulator a mechanically simpler configuration can be used
because the input radiation seed can be linearly polarized.

The radiators for both FEL-1 and FEL-2 consist of a sequence of 6 and 10 undulator magnets respectively.
Electromagnetic quadrupoles, high quality beam position monitors and quadrupole movers are
installed in between magnets to correct the electron trajectory. More details on the undulators can be
found in Chapter 7.

In summary, with a peak brightness in the lower energy region of the XUV spectrum that can reach values
10 orders of magnitude greater than that of third generation sources, with full transverse coherence,
close to transform limited bandwidth, pulse lengths of hundreds of femtoseconds, variable polarization
and tunability, the FERMI source is a powerful tool for scientific exploration.

Its coherence properties are expected to open up new perspectives for single shot imaging, allowing to
study the dynamics of chemical reactions and of other time dependent phenomena. The high peak power
will allow studying non-linear multi-photon processes in a regime so far never explored and enable
studying dilute samples of paramount importance in atmospheric, astrophysical and environmental
physics as well as in the characterization of nano-size materials. The short pulse duration will open the
door to visualizing ultra-fast nuclear and electronic dynamics.



1.3 References

[1] CJ. Bocchetta et al., "Elettra Present and Future Upgrades”, Proc PAC 2005, Knoxville, USA,
cern.ch/ AccelConf/p05/PAPERS /RPAE085.PDF

[2] M. Svandrlik et al.,, “Elettra New Full Energy Injector Status Report Status”, Proc. EPAC 2006,
Edimburgh, UK, accelconf.web.cern.ch/AccelConf/e06/ papers/thpls033.pdf

Conceptual Design Report 25






