The 'chiral' state of molecules photographed for the first time on an atomic scale

Immagine ‘chirale' delle molecole su scala atomica


An international research team led by the Institute for Photonics and Nanotechnology of the Consiglio Nazionale delle Ricerche (CNR-Ifn) in Milan has used an innovative approach to investigate the chirality of a molecule, an essential property for the development of technologically innovative solutions in the fields of materials science, pharmacology, and catalysis.
The study was conducted at the Sincrotrone Elettra laboratories in Trieste, where the FERMI free-electron laser is located: a latest-generation instrument thanks to which it was possible, for the first time, to 'photograph' the property of chirality at the level of individual atoms during an ultrafast process. The results of the study are published in Physical Review X.

Image caption: Image describing the experiment performed: a visible laser pulse activates an ultrafast process in a chiral molecule and then a circularly polarised FEL pulse measures the contribution of individual atoms to the chirality of the molecule.

'A chiral molecule is not superimposable on its mirror image: in other words, it is a molecule that does not have mirror symmetry, and exists in two different forms, called enantiomers, which cannot be superimposed by rotations or translations,' explains Caterina Vozzi, director of CNR-Ifn. 'Understanding this property is important for many aspects of chemistry, biology and physics: the chemical reactivity as well as the biological and pharmacological activities of chiral molecules can vary significantly depending on the configuration of the enantiomers. In applications involving these complex molecules, it is therefore important to understand how each atom contributes to the total chirality, especially during a chemical reaction'.
The variation in the chiral properties of a molecule over time was analysed in the study using the radiation produced by a free-electron laser (FEL), a state-of-the-art technology that enables the generation of extremely intense and short light pulses lasting only a few femtoseconds (1 femtosecond corresponds to one millionth of a billionth of a second).
'The FERMI free-electron laser is the only one in the world capable of producing pulses of circularly polarised light suitable for probing these phenomena. This type of light is able to provide detailed information about the structure and dynamics of molecules, opening up new perspectives in basic and applied research,' adds Oksana Plekan, a researcher at Elettra Sincrotrone Trieste and co-author of the study.
"In this study, we have shown how the chirality of a molecule changes during an ultrafast process when we observe it from the perspective of its constituent atoms. This ability to observe chirality from multiple points of view is comparable to stereoscopic vision in humans, thanks to which we can perceive the depth and three-dimensionality of the world around us," said Davide Faccialà, researcher at CNR-Ifn and first author of the study. "The technique we have demonstrated therefore allows us to observe in real time how the chirality of a molecule changes with an unprecedented level of detail, opening up new avenues for understanding the chemical and physical properties of chiral molecules in chemical reactions."
The study demonstrated the importance of combining expertise in different scientific fields to achieve innovative research results.
The National Research Council's Institute for the Structure of Matter (CNR-Ism), the Centre national de la recherche scientifique and the University of Bordeaux (France), the University of Nottingham (UK), the Deutsches Elektronen-Synchrotron and the University of Hamburg (Germany), the Politecnico di Milano (Italy), the University of Nova Gorica (Slovenia), Synchrotron Soleil (France) and the University of Tokyo (Japan) also contributed to the research.

"Time-resolved chiral x-ray photoelectron spectroscopy with transiently enhanced atomic site selectivity: A free-electron laser investigation of electronically excited fenchone enantiomers”, Physical Review X (Vol. 13,No. 1), link: https://link.aps.org/doi/10.1103/PhysRevX.13.011044

Press Review:
affaritaliani.it: Team guidato dal Cnr di Milano fotografa lo stato chirale delle molecole
aise.it: I passi della ricerca
insalutenews.it: Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica
rainews.it: "Fotografata" per la prima volta la chiralità delle molecole
adriaeco.eu: Fotografato per la prima volta lo stato chirale delle molecole su scala atomica
aise.it: Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica
askanews.it: Fotografato per la prima volta lo stato chirale delle molecole su scala atomica
cittadinapoli.com: Fotografato per la prima volta stato chirale molecole su scala atomica
corriereflegreo: Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica
forumitalia.info: Fotografato per la prima volta lo stato chirale delle molecole su scala atomica
imprese-lavoro.com: Team guidato dal Cnr di Milano fotografa lo stato chirale delle molecole
insalutenews.it: Fotografato per la prima volta lo stato chirale delle molecole su scala atomica
lescienze.it: Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica - Le Scienze
meteoweb.eu: Fotografato per la prima volta lo stato chirale delle molecole su scala atomica
paesesera.toscana.it: Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica
rainews.it: "Fotografata" per la prima volta la chiralita' delle molecole
ore12web.it: LE PRIME FOTO DELLA CHIRALITA' MOLECOLARE SU SCALA ATOMICA
ildenaro.it: Cnr, fotografato per la prima volta lo stato chirale delle molecole
unicaradio.it: Prima foto dello stato chirale delle molecole
triestecafe: Area Science Park, Fotografato per la prima volta lo stato "chirale" delle molecole su scala atomica
 
Last Updated on Wednesday, 03 May 2023 12:46