Elettra-Sincrotrone Trieste S.C.p.A. website uses session cookies which are required for users to navigate appropriately and safely. Session cookies created by the Elettra-Sincrotrone Trieste S.C.p.A. website navigation do not affect users' privacy during their browsing experience on our website, as they do not entail processing their personal identification data. Session cookies are not permanently stored and indeed are cancelled when the connection to the Elettra-Sincrotrone Trieste S.C.p.A. website is terminated.
More info
OK

Speed limit of the insulator–metal transition in magnetite


The workings of the Verwey transition revealed by a pump-probe X-ray diffraction and optical reflectivity techniques.

Nature Materials






As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator– metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low- temperature insulating electronically ordered phase . Here we investigate the Verwey transition with pump–probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator–metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 ± 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

Last Updated on Tuesday, 24 November 2015 19:10