The Automatic Beamline Alignment project at ELETTRA

Roberto Pugliese Alain Bertrand

Sincrotrone Trieste S.C.p.A.

Agenda

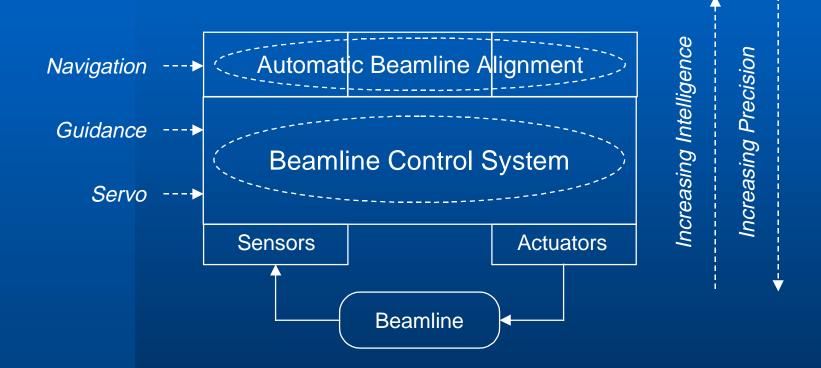
- The Automatic Beamline Alignment problem
- Applying Intelligent System Concepts to the Automatic Beamline Alignment problem
- A portable framework for the Automatic Beamline Alignment problem
- Project status and future developments
- Java Beamline Simulator

Automatic Beamline Alignment: problem scenario

- Heterogeneity of the beamlines
- Heterogeneity of the alignment purposes
- Limitations of actuators
- Limitations of sensors
- On-line and Off-line alignment
- Time constraints
- Availability of beam-time

Automatic Beamline Alignment: project goals

- Definition of a methodology
- Definition of a portable framework
- Implementation of application development tools
- Development of reusable off-the-shelf components
- Implementation of meaningful prototypes

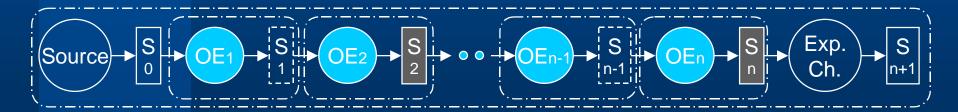


Applying Intelligent System Concepts to the Automatic Beamline Alignment problem

- Intelligent Systems (IS) incorporate the creative, abstract and adaptive attributes of a human while minimising the undesirable aspects such as unpredictability, inconsistency, fatigue, subjectivity and temporal instability
- Hybrid Intelligent Systems integrate Knowledge Based Systems, Neural Network, Fuzzy Systems, Evolutionary Algorithms, Case-Based reasoning, Chaos Theory and traditional techniques to solve effectively complex real world problems.

Applying the Model Reference architecture to beamlines

Automatic Beamline Alignment: problem statement


- A beamline is a pipeline of optical elements each with some degree of freedom
- Determine the position of the optical elements which optimise some beam parameters, such as flux and resolving power, at the experimental station.

Automatic Beamline Alignment: problem solving strategy

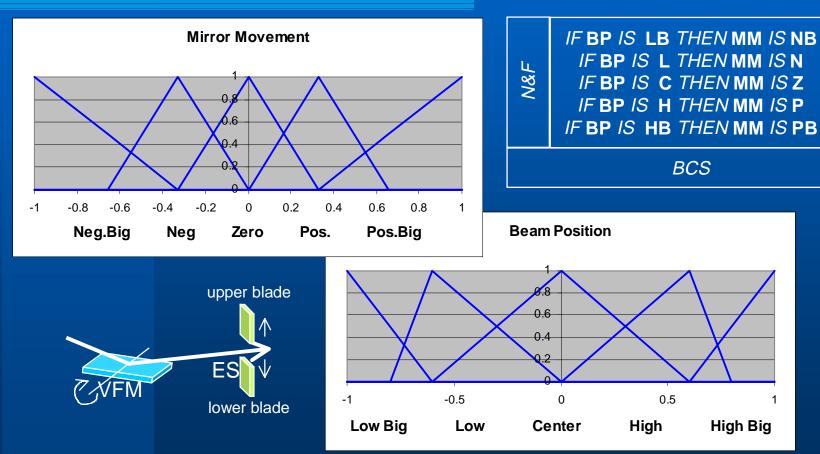
- Split the alignment problem into small sub-problems involving, for example, only one optical element and the associated sensor
- Implement for each sub-problem an alignment module using traditional or soft computing techniques
- Combine the modules using the strategic, behavioural knowledge of the optics expert

Beamline SpectroMicroscopy: the VFM alignment module

• Determine the position of the *Vertical Focusing Mirror* (VFM) which centres the beam at the *Entrance Slit* (ES) balancing the photoinduced currents

R.Pugliese, A.Bertrand

on the blades


ABA workshop, ESRF '99

upper blade

lower blade

ES

Beamline SpectroMicroscopy: the VFM fuzzy alignment algorithm

R.Pugliese, A.Bertrand

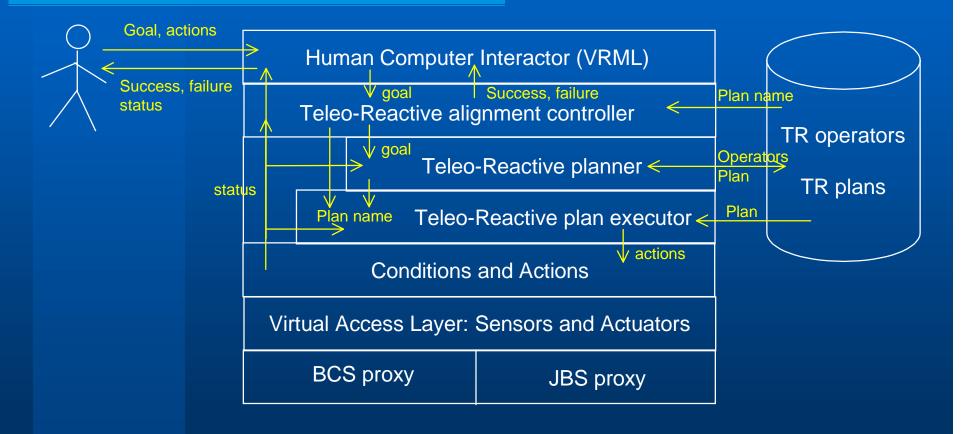
ABA workshop, ESRF '99

D&D

Teleo-Reactive (TR) control

- TR control occupies a region between feedback control and discrete action planning:
 - actions can be either discrete or continuous
 - actions are not guaranteed to achieve their goals
 - actions can be interrupted in response to changes in the environment
- TR plans can be represented as a sequence of condition-action pairs called TR operators.
 - TR plan execution is adaptive and opportunistic: conditions are evaluated from top to bottom and the action associated o the first true condition is performed.

$$C0 \rightarrow A0$$

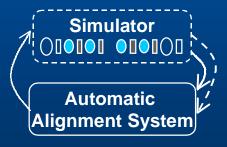

$$C1 \rightarrow A1$$

$$Ci \rightarrow Ai$$

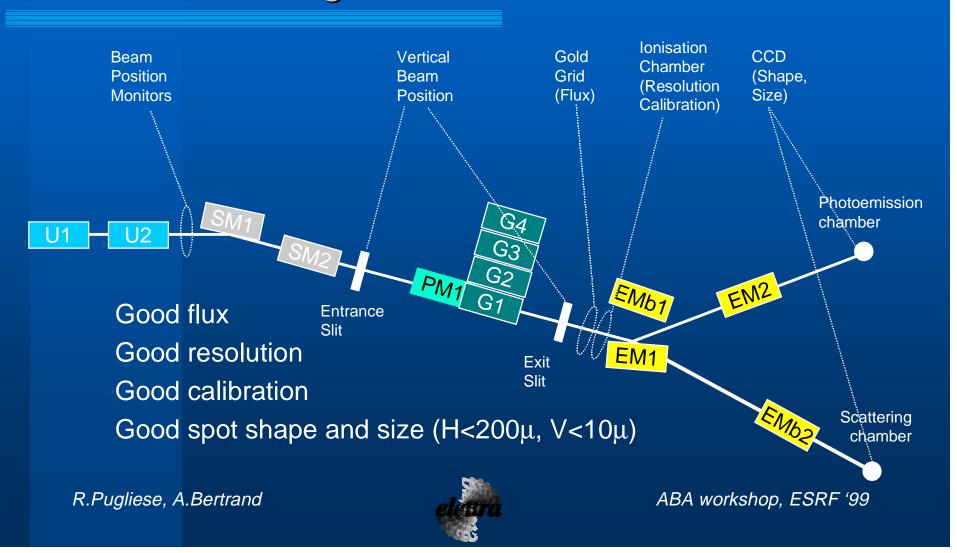
$$Cn \rightarrow An$$

Automatic Beamline Alignment: system architecture

Project status and future developments


- The Automatic Beamline Alignment is now one of the official projects of ELETTRA
- A framework for the conceptual development of Automatic Beamline Alignment systems has been designed
- We are currently developing a set of tools which support the proposed framework
- The framework and the tools will be tested on on a challenging automatic alignment problem

The Beamline Simulator: much more than a development tool


- Based on object oriented ray tracing, provides an operational model of the beamline
- Can be used on-line and off-line
- Designed to be extendible, flexible, integrable and portable
- Implemented using JavaBeans and CORBA

Beamline for Advanced diCHronism (BACH): Automatic Alignment Goals

Acknowledgements

- Daniele Cocco, Claudio Scafuri, Fulvio Bille' from ELETTRA
- Olof Svensson from ESRF
- Carlo Tasso, Luca Chittaro, Andrea Buttol, Lorenzo David from the University of Udine
- Carl Stern from Vista Control Systems and the New Mexico University

