Multi-orbital charge transfer
We report theoretical and experimental evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on Cu(100). The exceptional charge transfer leads to lling of the higher unoccupied orbitals up to LUMO+3.
G. Zamborlini et al., Nature Communications, 8, 335 (2017).
Organic-based device performances have been rapidly improving in the last years, making them suitable for large-scale industrial applications, involving photo-voltaic cells, light emission systems and building of larger flexible electronics. In parallel, basic research has intensively focused on the chemical and physical properties of semiconducting π-conjugated organic molecules, as they appear to be promising for organic-based device construction. In particular, in controlling the charge injection on such devices, a predominant role is played by the molecule-substrate interaction. Charge transfer at the molecule-metal interface strongly affects the overall physical and magnetic properties of the system, and ultimately, the device performance.
On the perspective of possible technological applications, such as colorimetric gas sensors, organic spin-valves, field-effect transistors, etc., porphyrin represent a class of extremely versatile molecules, allowing for tailoring a variety of electronic, magnetic and conformational properties. In particular, supramolecular multi-porphyrin arrays are considered as functional components in nanodevices. Here, we report theoretical and experimental evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules (Ni-TPP) adsorbed on Cu(100).
This limitation can be overcome by molecular orbital tomography (MOT) which combines angle resolved photoelectron spectroscopy (ARPES) with DFT calculations. This approach gives a direct access to the molecular orbitals by looking at their signature in the angular distribution of the photoemitted electrons from the molecular film. |
Our results emphasize the importance of complementary STM and μ-ARPES measurements for characterizing complex organic systems. A multi-technique approach, including electronic structure calculations, permits to develop a consistent picture of the adsorption behavior and electronic properties of interfaces between non-planar molecules and metallic surfaces.
.Retrieve article
“Multi-orbital charge transfer at highly oriented organic/metal interfaces”, G. Zamborlini, D. Lüftner, Zh. Feng, B. Kollmann, P. Puschnig, C. Dri, M. Panighel, G. Di Santo, A. Goldoni, G. Comelli, M. Jugovac, V. Feyer, C.M. Schneider, Nature Communications, 8, 335 (2017),
|