Response of the wurzite GaN surface to swift heavy ion irradiation
Ion tracks on wurzite GaN surface were investigated after exposure to grazing incidence swift heavy ion (SHI) beams. Structural investigations by atomic force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS) were complemented by monitoring stoichiometry changes using in situ time-of-flight elastic recoil detection analysis (TOF-ERDA).
M. Karlušić et al.,J. Phys. D: Appl. Phys. 48 , 325304 (2015).
The passage of a SHI through a solid material can result in permanent nanoscale damage called ion track. The most common description of the SHI track formation, the thermal spike model, suggests that the kinetic energy of the SHI projectile that is deposited as dense electronic excitation along the SHI trajectory, can lead to nanoscale melting of the material. Irradiation of a flat solid surface by SHI under grazing incidence angle can result in the formation of surface SHI tracks. These ion tracks can be observed directly using atomic force microscopy (AFM). However, to extract statistical information (average ion track length, length distribution etc.), structural investigations of this type are very time consuming. In the present work, we report the results of our investigations regarding SHI irradiation of wurzite GaN surface, and show that grazing incidence small angle X-ray scattering (GISAXS) can be utilized for acquiring an excellent statistics during short measuring times. |
Response of GaN to energetic ion irradiation: conditions for ion track formation; M. Karlušić, R. Kozubek, H. Lebius, B. Ban-d’Etat, R.A. Wilhelm, M. Buljan, Z. Siketić, F. Scholz, T. Meisch, M. Jakšić, S. Bernstorff, M. Schleberger and B. Šantić, J. Phys. D: Appl. Phys., Vol. 48, artic. 325304 (2015), 10.1088/0022-3727/48/32/325304 |