Welcome to the TomoLab
X-ray computed microtomography (micro-CT) is one of the most advanced techniques in the field of nondestructive evaluation tests. It allows imaging of the internal microstructure of different objects and materials, measuring the three-dimensional (3D) X-ray attenuation coefficient map of the sample. Thanks to this technique, the distribution of regions with different density and/or chemical composition inside the sample can be visualized by means of virtual slicing or using 3D volume rendering procedures.The TomoLab station at Elettra is an instrument offering scientists and engineers access to a state-of-the-art micro-CT system based on a microfocus source. The TomoLab has been designed as complementary to the SYRMEP beamline setup for micro-CT both fot the energy range available and for the X-ray beam size at sample. Due to the cone-beam geometry it is possible to achieve a spatial resolution close to the focal spot size. Wilkins & co. in 1996 have shown that radiographs made using the polychromatic beam from a microfocus X-ray generator do reveal phase jumps. Then, thanks to this property, at the TomoLab station it is possible to perform phase-contrast microCT measurements, also if a limited spatial coherence with respect to a synchrotron X-ray beam could be achieved.
Because X-ray micro-CT is a nondestructive characterization technique, it represents a powerful investigation tool in many different applications, especially in the area of material science as well as geology or biomaterials. Through image analysis processing tools, it is possible to obtain quantitative information from the investigated samples. In particular, geometrical or morphological features inside the sample volume can be analysed and useful specific parameters can be extracted.
|
Research highlightsThe teeth of a prehistoric fetus give us information about the last months of a mother and child, who lived 27.000 years BPIn this study, synchrotron and laboratory X-ray computed microtomography were combined to study the teeth of a fetus found in the pelvic area of the skeleton of a young girl. The fossil records were discovered in the “Ostuni 1” burial site (Puglia, Italy) and dated back over 27,000 years. 3D Pore-network quantitative analysis in deformed carbonate grainstones3D Pore-network quantitative analysis in deformed carbonate grainstonesA 3D investigation of the pore network properties in deformed carbonate grainstones cropping out in Sicily and Abruzzo regions (Italy). . In this study, the pore network properties of suitable rock samples were studied by quantitative analysis of X-ray microtomographic images using both synchrotron and microfocus sources.M. Zambrano et. al; Marine and Petroleum Geology 82 (2017) 251-264. Read More A comparative high-resolution endostructural study reveal Neanderthal-like features in 450,000-year-old human dental remains from the Italian Peninsula
Fossil records enable a detailed reconstruction of our planet’s history and of the evolution of our species. In particular, teeth are a sort of biological archive that record in their structures (enamel, dentine and pulp chamber) the different phases of the human evolution.
Recycling alginate composites for thermal insulation
Lab-based X-ray comuted microtomography was used to characterize the microstructure of natural-based, effective thermal insulators that are fully recyclable. This simultaneously tackle the issue of energy efficiency and that of a sustainable sourcing for these materials, thanks to a cradle-to-cradle approach and in the spirit of the circular economy.
0123
|
The TomoLab station is operational since 2006 and it has been realized by a collaboration between ELETTRA and Dipartimento di Ingegneria Civile e Ambientale and Corso di Laurea Odontoiatria e Protesi Dentaria of the Università diTrieste.