Nanospectroscopy highlights
- Nanospectroscopy highlights
- Subfilamentary Networks in Memristive Devices
- Graphene and h-BN by a Single Molecular Precursor
- Fabrication of 2D heterojunction in graphene
- Island Ripening in a catalytic reaction
- Nanobubbles at GPa pressure under graphene
- Edge specific graphene nanoribbons
- Imaging the way molecules desorb from catalysts
- Towards the perfect graphene membrane
- Rippling of graphene on Ir(100)
- Thinnest loadstone ever
- Thermal stability of Graphene on Re(001)
- Stress Engineering at the Nanometer Scale
- Image blur in XPEEM
- AFM domain imaging using LEEM
- ARPES on corrugated graphene
- Corrugation in Exfoliated Graphene
- Domain-Wall Depinning by Spin Currents
- Tutte le pagine
ARPES on corrugated graphene
Exfoliated graphene crystals are not perfectly flat but can deform out-of-plane due to intrinsic and extrinsic factors. Ripples and distortions are known to be the most important sources of electron scattering in graphene, greatly affecting its transport properties. Such corrugations are also a serious obstacle to carry out angle resolved photoemission (ARPES) for probing the material's electronic structure, since this technique demands atomically flat surfaces. Combining ARPES with microprobe low energy electron diffraction makes it possible to circumvent such limitations. By measuring independently the short range roughness of corrugated suspended graphene sheets, we can distinguish corrugation effects from intrinsic lifetime broadening in ARPES, |
showing that the quasiparticle lifetime scales inversely with energy. This approach is expected to be useful for probing the band structure of a variety of corrugated 2D system. Retrieve article
Making angle-resolved photoemission measurements on corrugated monolayer crystals: Suspended exfoliated single-crystal graphene; |