Nanospectroscopy highlights
- Nanospectroscopy highlights
- Subfilamentary Networks in Memristive Devices
- Graphene and h-BN by a Single Molecular Precursor
- Fabrication of 2D heterojunction in graphene
- Island Ripening in a catalytic reaction
- Nanobubbles at GPa pressure under graphene
- Edge specific graphene nanoribbons
- Imaging the way molecules desorb from catalysts
- Towards the perfect graphene membrane
- Rippling of graphene on Ir(100)
- Thinnest loadstone ever
- Thermal stability of Graphene on Re(001)
- Stress Engineering at the Nanometer Scale
- Image blur in XPEEM
- AFM domain imaging using LEEM
- ARPES on corrugated graphene
- Corrugation in Exfoliated Graphene
- Domain-Wall Depinning by Spin Currents
- All Pages
Thinnest loadstone ever
Despite being the oldest known magnetic material, magnetite is attracting renewed scientific and technological interest in view of spintronics applications. For the realization of practical devices, it is of utmost importance to control the material's magnetic properties in the case the reduced dimensionality limit is approached, as it occurs in thin films or nanostructures, aiming at obtaining stable anisotropy and magnetization. Although magnetite thin films are widely studied, the minimum thickness at which ferrimagnetic behavior can be observed is still under debate. In fact, most thin film studies are performed by separate growth and characterization experiments, which are typically carried out using laterally averaging techniques. To solve this fundamental problem we have exploited the current capabilities of photoelectron spectromicroscopy, and characterized the structural, chemical and magnetic properties of selected magnetite nanocrystals. Through the combined use of low energy electron microscopy, |
X-ray photoemission microscopy, and X-ray circular dichroism photoemission electron microscopy we successfully monitored the growth of a single magnetite nanocrystal in real time while characterizing its crystal structure, surface stoichiometry and magnetic behavior. In this way, we have been able to find out that magnetite is ferromagnetic at room temperature at a thickness of only one nanometer, in what may be the thinnest lodestone ever. Retrieve article
Magnetism in nanometer-thick magnetite; |