Elettra-Sincrotrone Trieste S.C.p.A. website uses session cookies which are required for users to navigate appropriately and safely. Session cookies created by the Elettra-Sincrotrone Trieste S.C.p.A. website navigation do not affect users' privacy during their browsing experience on our website, as they do not entail processing their personal identification data. Session cookies are not permanently stored and indeed are cancelled when the connection to the Elettra-Sincrotrone Trieste S.C.p.A. website is terminated.
More info

Beamline Description

End Station

A schematic picture of the BaDElPh end station is reported in figure 1. It consists of three independent ultra-high vacuum (UHV) chambers and a load-lock. There are valves between the analysis chamber and the beamline, between the analysis chamber and the preparation chamber, between the preparation chamber and the heater chamber, and between the heater chamber and load lock. All these chambers are pumped by turbo pumps.

The Analysis Chamber

Since March 2008, a new mu-metal experimental chamber has been installed. It houses the new electron energy analyzer, a SPECS Phoibos 150 with a 2D-CCD detector system, a high-intensity VUV source (He), a conventional X-ray source (Al & Mg), a low-energy electron diffraction (LEED) optics, a gas-cell, and a residual gas analyzer (RGA). The base pressure in the analysis chamber is in 10-11-10-12 mbar range.

The Prepartion and Heater Chambers

The preparation chamber is normally equipped with an ion sputter gun and a silver evaporator while in the heater chamber is present a 7-slot sample flag parking device and an electron bombardment heater stage for high-temperature (up to about 2400 K) annealing of the sample. Both these chambers have several free flanges to mount the needed tools for the required sample preparation (cleavage, scraping, gas treatment) and for UHV in-situ growth of thin films. The base pressure in the preparation chamber is in 10-10-10-11 mbar range while in the heater chamber the base pressure is in the 10-10 mbar range. The heater chamber is equipped with a load-lock that allows to transfer samples in about 30 minutes from air to a vacuum of better than 10-7 mbar.

                Figure 1: BaDElPh end station


Last Updated on Monday, 15 January 2018 18:05