Elettra-Sincrotrone Trieste S.C.p.A. website uses session cookies which are required for users to navigate appropriately and safely. Session cookies created by the Elettra-Sincrotrone Trieste S.C.p.A. website navigation do not affect users' privacy during their browsing experience on our website, as they do not entail processing their personal identification data. Session cookies are not permanently stored and indeed are cancelled when the connection to the Elettra-Sincrotrone Trieste S.C.p.A. website is terminated.
More info

Spin-orbit interaction and Dirac cones in d-orbital noble metal surface states

Band splittings, chiral spin polarization, and topological surface states generated by spin-orbit interactions at crystal surfaces are receiving a lot of attention for their potential device applications as well as fascinating physical properties. Most studies have focused on sp states near the Fermi energy, which are relevant for transport and have long lifetimes. Far less explored, though in principle stronger, are spin-orbit interaction effects within d states, including those deep below the Fermi energy.  
R. Requist et al.Phys. Rev. B 91 (2015) 045432 

Here, we report a joint photoemission and ab initio study of spin-orbit effects in the deep d-orbital surface states of a 24-layer Au film grown on Ag(111) and a 24-layer Ag film grown on Au(111), singling out a conical intersection (Dirac cone) between two surface states in a large surface-projected gap at the time-reversal symmetric M bar points. Unlike the often isotropic dispersion at Γ bar point Dirac cones, the M bar point cones are strongly anisotropic. An effective kHamiltonian is derived to describe the anisotropic band splitting and spin polarization near the Dirac cone.


Last Updated on Friday, 15 May 2020 06:35