XRD1 Highlights
- XRD1 Highlights
- C1–C4 alcohol–cavitand complexes
- Cuprate Superconductor
- Jack Bean Urease
- XRD1 Sample Changer
- Carbonic Anhydrase
- PDI8CN2
- Human Legumain
- Structure of Human NAPE-PLD
- beta-Chitin in Squid Pen
- Enhanced Green Fluorescent Protein
- Multitarget drug design strategy
- Hydrogen-bonded Organic Pigments
- Selectivity of CNG channels
- Polycyclic Aromatic Hydrocarbons
- Cisplatin Encapsulation within the Ferritin Nanocage
- Crystal structure of the earthworm toxin
- Chemistry at the protein–mineral interface in L-ferritin
- Porous N-doped graphene
- Sliding of the human DNA clamp PCNA
- S1′ Pocket of Thermolysin
- microbial NLP cytolysins
- Human ubiquitin
- Photosynthesis
- Nanoparticles
- Anode Materials
- Stone Materials
- Sensor humidity
- Xe shell
- OSC
- Peptide nanotubes
- Amyloid aggregates
- Perovskites optimization
- Hydrocarbons
- CO2 separation
- Flexibility
- All Pages
Pore flexibility underlies the poor selectivity of CNG channels: a structural, functional and computational analysis
![]()
|
Cyclic nucleotide-gated (CNG) channels play important roles in transmitting information about vision and smell from sensory cells to the
brain, and share a high degree of similarity with K+ channels. Whereas K+ channels discriminate with high accuracy Na+ from K+, CNG channels do not discriminate among different cations. By combining electrophysiology, molecular dynamics simulations and X-ray crystallography we found that the pore region exhibits a dynamic structure and the pore diameter critically depends on the ion within. |
Retrieve article
A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels, Napolitano LMR, Bisha I, De March M, Marchesi A, Arcangeletti M, Demitri N, Mazzolini M, Rodriguez A, Magistrato A, Onesti S, Laio A, Torre V |