XRD1 Highlights
- XRD1 Highlights
- C1–C4 alcohol–cavitand complexes
- Cuprate Superconductor
- Jack Bean Urease
- XRD1 Sample Changer
- Carbonic Anhydrase
- PDI8CN2
- Human Legumain
- Structure of Human NAPE-PLD
- beta-Chitin in Squid Pen
- Enhanced Green Fluorescent Protein
- Multitarget drug design strategy
- Hydrogen-bonded Organic Pigments
- Selectivity of CNG channels
- Polycyclic Aromatic Hydrocarbons
- Cisplatin Encapsulation within the Ferritin Nanocage
- Crystal structure of the earthworm toxin
- Chemistry at the protein–mineral interface in L-ferritin
- Porous N-doped graphene
- Sliding of the human DNA clamp PCNA
- S1′ Pocket of Thermolysin
- microbial NLP cytolysins
- Human ubiquitin
- Photosynthesis
- Nanoparticles
- Anode Materials
- Stone Materials
- Sensor humidity
- Xe shell
- OSC
- Peptide nanotubes
- Amyloid aggregates
- Perovskites optimization
- Hydrocarbons
- CO2 separation
- Flexibility
- All Pages
Layered metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene
![]() Scheme of the work showing the COF-1 structure, the metal coordination COF-1-M and the calcination process to produce N-doped graphenes. This strategy avoids the need of the use of any additional template, allowing the formation of corrugated graphene in a one-pot reaction from the COF-1–M precursors. J. Romero. et al., J. Mater. Chem. A, 5, 4343, (2017) |
A crystalline and porous layered covalent organic framework (COF) based on polyimine has shown the ability to link FeIII, CoII and NiII into its cavities. The structure and morphology of these functionalized COFs enable to generate N-doped porous graphene upon controlled calcination. The so formed highly corrugated and N-doped porous graphene sheets exhibit high values of specific capacitance that make them useful as electrode material for supercapacitors.
|
Retrieve Article
Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene ; |