XRD1 Highlights
- XRD1 Highlights
- C1–C4 alcohol–cavitand complexes
- Cuprate Superconductor
- Jack Bean Urease
- XRD1 Sample Changer
- Carbonic Anhydrase
- PDI8CN2
- Human Legumain
- Structure of Human NAPE-PLD
- beta-Chitin in Squid Pen
- Enhanced Green Fluorescent Protein
- Multitarget drug design strategy
- Hydrogen-bonded Organic Pigments
- Selectivity of CNG channels
- Polycyclic Aromatic Hydrocarbons
- Cisplatin Encapsulation within the Ferritin Nanocage
- Crystal structure of the earthworm toxin
- Chemistry at the protein–mineral interface in L-ferritin
- Porous N-doped graphene
- Sliding of the human DNA clamp PCNA
- S1′ Pocket of Thermolysin
- microbial NLP cytolysins
- Human ubiquitin
- Photosynthesis
- Nanoparticles
- Anode Materials
- Stone Materials
- Sensor humidity
- Xe shell
- OSC
- Peptide nanotubes
- Amyloid aggregates
- Perovskites optimization
- Hydrocarbons
- CO2 separation
- Flexibility
- All Pages
Page 21 of 36
How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin
Krimmer S G et al., J. Am. Chem. Soc., 2017, 139 (30), pp 10419–10431 |
The hydration state of deep, well-accessible hydrophobic pocket of the metalloprotease thermolysin has been investigated using high-resolution crystallography and isothermal titration calorimetry to understand solvent effects in protein−ligand interactions, a key topic in drug design. The enzyme accessibility could be proved by accommodating noble gas atoms into the pocket in the crystalline state. The noble gases xenon and krypton are known to preferentially bind to desolvated, hydrophobic protein cavities through weak van der Waals interactions. These atoms can, therefore, be used as experimental probes to detect such cavities. |
Retrieve Article How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin. Krimmer S G, Cramer J, Schiebel J, Heine A, Klebe G, J. Am. Chem. Soc., 2017, 139 (30), pp 10419–10431 DOI: 10.1021/jacs.7b05028 |
Last Updated on Monday, 22 May 2023 15:31